BrianIsaac's picture
fix: remove unused pandas-ta dependency causing Python version conflict
6c10ae1
"""Trading MCP Server.
This MCP server provides technical analysis indicators and signals.
Uses manual implementations for technical indicator calculations.
"""
import logging
from typing import Dict, List, Optional
from decimal import Decimal
import pandas as pd
import yfinance as yf
from fastmcp import FastMCP
from pydantic import BaseModel, Field
from tenacity import (
retry,
stop_after_attempt,
wait_exponential,
retry_if_exception_type,
)
logger = logging.getLogger(__name__)
# Initialize MCP server
mcp = FastMCP("trading")
class TechnicalIndicatorsRequest(BaseModel):
"""Request for technical indicators."""
ticker: str
period: str = Field(default="3mo", description="Data period: 1mo, 3mo, 6mo, 1y")
class RSI(BaseModel):
"""Relative Strength Index."""
value: Decimal
signal: str = Field(..., description="overbought, oversold, or neutral")
class MACD(BaseModel):
"""Moving Average Convergence Divergence."""
macd: Decimal
signal: Decimal
histogram: Decimal
trend: str = Field(..., description="bullish, bearish, or neutral")
class BollingerBands(BaseModel):
"""Bollinger Bands."""
upper: Decimal
middle: Decimal
lower: Decimal
current_price: Decimal
position: str = Field(..., description="above, within, or below bands")
class MovingAverages(BaseModel):
"""Moving averages."""
sma_20: Optional[Decimal] = None
sma_50: Optional[Decimal] = None
sma_200: Optional[Decimal] = None
ema_12: Optional[Decimal] = None
ema_26: Optional[Decimal] = None
current_price: Decimal
trend: str = Field(..., description="bullish, bearish, or neutral")
class TechnicalIndicators(BaseModel):
"""Complete set of technical indicators."""
ticker: str
rsi: Optional[RSI] = None
macd: Optional[MACD] = None
bollinger_bands: Optional[BollingerBands] = None
moving_averages: Optional[MovingAverages] = None
volume_trend: Optional[str] = None
overall_signal: str = Field(..., description="buy, sell, or hold")
def calculate_rsi(prices: pd.Series, period: int = 14) -> float:
"""Calculate RSI."""
delta = prices.diff()
gain = (delta.where(delta > 0, 0)).rolling(window=period).mean()
loss = (-delta.where(delta < 0, 0)).rolling(window=period).mean()
rs = gain / loss
rsi = 100 - (100 / (1 + rs))
return rsi.iloc[-1]
def calculate_macd(prices: pd.Series) -> Dict[str, float]:
"""Calculate MACD."""
ema_12 = prices.ewm(span=12, adjust=False).mean()
ema_26 = prices.ewm(span=26, adjust=False).mean()
macd_line = ema_12 - ema_26
signal_line = macd_line.ewm(span=9, adjust=False).mean()
histogram = macd_line - signal_line
return {
"macd": macd_line.iloc[-1],
"signal": signal_line.iloc[-1],
"histogram": histogram.iloc[-1],
}
def calculate_bollinger_bands(prices: pd.Series, period: int = 20) -> Dict[str, float]:
"""Calculate Bollinger Bands."""
sma = prices.rolling(window=period).mean()
std = prices.rolling(window=period).std()
upper = sma + (2 * std)
lower = sma - (2 * std)
return {
"upper": upper.iloc[-1],
"middle": sma.iloc[-1],
"lower": lower.iloc[-1],
}
@retry(
stop=stop_after_attempt(3),
wait=wait_exponential(multiplier=1, min=2, max=10),
retry=retry_if_exception_type((TimeoutError, ConnectionError, Exception)),
)
@mcp.tool()
async def get_technical_indicators(request: TechnicalIndicatorsRequest) -> TechnicalIndicators:
"""Get technical indicators for a ticker.
Args:
request: Technical indicators request
Returns:
Technical indicators
Example:
>>> await get_technical_indicators(TechnicalIndicatorsRequest(ticker="AAPL"))
"""
logger.info(f"Calculating technical indicators for {request.ticker}")
try:
# Fetch historical data
stock = yf.Ticker(request.ticker)
hist = stock.history(period=request.period)
if hist.empty:
logger.warning(f"No data found for {request.ticker}")
return TechnicalIndicators(ticker=request.ticker, overall_signal="hold")
close_prices = hist["Close"]
volumes = hist["Volume"]
current_price = Decimal(str(close_prices.iloc[-1]))
# RSI
rsi_value = calculate_rsi(close_prices)
rsi_signal = "overbought" if rsi_value > 70 else "oversold" if rsi_value < 30 else "neutral"
rsi = RSI(value=Decimal(str(rsi_value)), signal=rsi_signal)
# MACD
macd_data = calculate_macd(close_prices)
macd_trend = "bullish" if macd_data["histogram"] > 0 else "bearish" if macd_data["histogram"] < 0 else "neutral"
macd = MACD(
macd=Decimal(str(macd_data["macd"])),
signal=Decimal(str(macd_data["signal"])),
histogram=Decimal(str(macd_data["histogram"])),
trend=macd_trend,
)
# Bollinger Bands
bb_data = calculate_bollinger_bands(close_prices)
bb_position = (
"above" if current_price > Decimal(str(bb_data["upper"]))
else "below" if current_price < Decimal(str(bb_data["lower"]))
else "within"
)
bollinger_bands = BollingerBands(
upper=Decimal(str(bb_data["upper"])),
middle=Decimal(str(bb_data["middle"])),
lower=Decimal(str(bb_data["lower"])),
current_price=current_price,
position=bb_position,
)
# Moving Averages
sma_20 = close_prices.rolling(window=20).mean().iloc[-1] if len(close_prices) >= 20 else None
sma_50 = close_prices.rolling(window=50).mean().iloc[-1] if len(close_prices) >= 50 else None
sma_200 = close_prices.rolling(window=200).mean().iloc[-1] if len(close_prices) >= 200 else None
ema_12 = close_prices.ewm(span=12).mean().iloc[-1]
ema_26 = close_prices.ewm(span=26).mean().iloc[-1]
ma_trend = "bullish" if current_price > Decimal(str(sma_20 or 0)) else "bearish" if sma_20 else "neutral"
moving_averages = MovingAverages(
sma_20=Decimal(str(sma_20)) if sma_20 else None,
sma_50=Decimal(str(sma_50)) if sma_50 else None,
sma_200=Decimal(str(sma_200)) if sma_200 else None,
ema_12=Decimal(str(ema_12)),
ema_26=Decimal(str(ema_26)),
current_price=current_price,
trend=ma_trend,
)
# Volume trend
avg_volume = volumes.mean()
current_volume = volumes.iloc[-1]
volume_trend = "high" if current_volume > avg_volume * 1.5 else "low" if current_volume < avg_volume * 0.5 else "normal"
# Overall signal
signals = []
if rsi_signal == "oversold":
signals.append("buy")
elif rsi_signal == "overbought":
signals.append("sell")
if macd_trend == "bullish":
signals.append("buy")
elif macd_trend == "bearish":
signals.append("sell")
if ma_trend == "bullish":
signals.append("buy")
elif ma_trend == "bearish":
signals.append("sell")
buy_count = signals.count("buy")
sell_count = signals.count("sell")
overall_signal = "buy" if buy_count > sell_count else "sell" if sell_count > buy_count else "hold"
indicators = TechnicalIndicators(
ticker=request.ticker,
rsi=rsi,
macd=macd,
bollinger_bands=bollinger_bands,
moving_averages=moving_averages,
volume_trend=volume_trend,
overall_signal=overall_signal,
)
logger.info(f"Successfully calculated indicators for {request.ticker}: {overall_signal}")
return indicators
except Exception as e:
logger.error(f"Error calculating technical indicators for {request.ticker}: {e}")
return TechnicalIndicators(ticker=request.ticker, overall_signal="hold")
# Export the MCP server
if __name__ == "__main__":
mcp.run()