BrianIsaac's picture
feat: implement P1 features and production infrastructure
76897aa
"""Cache decorators for easy integration with existing functions.
This module provides decorators to automatically cache function results
with configurable TTL strategies and cache key generation.
"""
import functools
import hashlib
import inspect
import json
import logging
from typing import Any, Callable, Optional, TypeVar
from backend.caching.factory import get_cache
from backend.caching.redis_cache import CacheDataType, TTLStrategy
logger = logging.getLogger(__name__)
T = TypeVar("T")
def cached(
namespace: str = "default",
data_type: CacheDataType = CacheDataType.ANALYSIS_RESULTS,
ttl: Optional[int] = None,
key_prefix: Optional[str] = None,
include_self: bool = False,
) -> Callable[[Callable[..., T]], Callable[..., T]]:
"""Decorator to cache function results.
Args:
namespace: Cache namespace for key generation.
data_type: Type of data being cached (for TTL strategy).
ttl: Custom TTL override (seconds).
key_prefix: Optional prefix for cache key.
include_self: Include 'self' in cache key for instance methods.
Returns:
Decorated function with caching.
Example:
>>> @cached(namespace="market", data_type=CacheDataType.MARKET_DATA)
>>> def get_stock_price(ticker: str) -> float:
... # Expensive API call
... return fetch_price_from_api(ticker)
>>>
>>> # First call - fetches from API and caches
>>> price1 = get_stock_price("AAPL")
>>>
>>> # Second call - returns cached value
>>> price2 = get_stock_price("AAPL")
"""
def decorator(func: Callable[..., T]) -> Callable[..., T]:
@functools.wraps(func)
def wrapper(*args, **kwargs) -> T:
cache = get_cache()
# Generate cache key from function arguments
cache_key = _generate_cache_key(
namespace,
func.__name__,
args,
kwargs,
key_prefix=key_prefix,
include_self=include_self,
)
# Try to get from cache
cached_value = cache.get(cache_key)
if cached_value is not None:
logger.debug(f"Cache HIT for {cache_key}")
return cached_value
logger.debug(f"Cache MISS for {cache_key}")
# Call function and cache result
result = func(*args, **kwargs)
# Get TTL for this data type
cache_ttl = ttl if ttl is not None else TTLStrategy.get_ttl(data_type)
# Cache the result
cache.set(cache_key, result, ttl=cache_ttl)
return result
# Add cache control methods to the wrapper
wrapper.cache_key = lambda *args, **kwargs: _generate_cache_key(
namespace,
func.__name__,
args,
kwargs,
key_prefix=key_prefix,
include_self=include_self,
)
wrapper.invalidate = lambda *args, **kwargs: get_cache().delete(
wrapper.cache_key(*args, **kwargs)
)
return wrapper
return decorator
def cached_async(
namespace: str = "default",
data_type: CacheDataType = CacheDataType.ANALYSIS_RESULTS,
ttl: Optional[int] = None,
key_prefix: Optional[str] = None,
include_self: bool = False,
) -> Callable[[Callable[..., Any]], Callable[..., Any]]:
"""Decorator to cache async function results.
Args:
namespace: Cache namespace for key generation.
data_type: Type of data being cached (for TTL strategy).
ttl: Custom TTL override (seconds).
key_prefix: Optional prefix for cache key.
include_self: Include 'self' in cache key for instance methods.
Returns:
Decorated async function with caching.
Example:
>>> @cached_async(namespace="portfolio", data_type=CacheDataType.PORTFOLIO_METRICS)
>>> async def analyse_portfolio(portfolio_id: str) -> dict:
... # Expensive async analysis
... return await perform_analysis(portfolio_id)
>>>
>>> # First call - performs analysis and caches
>>> result1 = await analyse_portfolio("portfolio-123")
>>>
>>> # Second call - returns cached value
>>> result2 = await analyse_portfolio("portfolio-123")
"""
def decorator(func: Callable[..., Any]) -> Callable[..., Any]:
@functools.wraps(func)
async def wrapper(*args, **kwargs) -> Any:
cache = get_cache()
# Generate cache key from function arguments
cache_key = _generate_cache_key(
namespace,
func.__name__,
args,
kwargs,
key_prefix=key_prefix,
include_self=include_self,
)
# Try to get from cache
cached_value = cache.get(cache_key)
if cached_value is not None:
logger.debug(f"Cache HIT for {cache_key}")
return cached_value
logger.debug(f"Cache MISS for {cache_key}")
# Call async function and cache result
result = await func(*args, **kwargs)
# Get TTL for this data type
cache_ttl = ttl if ttl is not None else TTLStrategy.get_ttl(data_type)
# Cache the result
cache.set(cache_key, result, ttl=cache_ttl)
return result
# Add cache control methods to the wrapper
wrapper.cache_key = lambda *args, **kwargs: _generate_cache_key(
namespace,
func.__name__,
args,
kwargs,
key_prefix=key_prefix,
include_self=include_self,
)
wrapper.invalidate = lambda *args, **kwargs: get_cache().delete(
wrapper.cache_key(*args, **kwargs)
)
return wrapper
return decorator
def cache_invalidate(namespace: str, pattern: str = "*") -> int:
"""Invalidate cache entries matching a pattern.
Args:
namespace: Cache namespace.
pattern: Pattern to match (default: all in namespace).
Returns:
Number of entries invalidated.
Example:
>>> # Invalidate all portfolio cache entries
>>> cache_invalidate("portfolio", "portfolio-123:*")
>>>
>>> # Invalidate all market data
>>> cache_invalidate("market")
"""
cache = get_cache()
full_pattern = f"{namespace}:{pattern}"
deleted = cache.delete_pattern(full_pattern)
logger.info(f"Invalidated {deleted} cache entries matching {full_pattern}")
return deleted
def _generate_cache_key(
namespace: str,
func_name: str,
args: tuple,
kwargs: dict,
key_prefix: Optional[str] = None,
include_self: bool = False,
) -> str:
"""Generate deterministic cache key from function arguments.
Args:
namespace: Cache namespace.
func_name: Function name.
args: Positional arguments.
kwargs: Keyword arguments.
key_prefix: Optional prefix.
include_self: Include 'self' parameter for instance methods.
Returns:
Generated cache key.
"""
# Filter out 'self' from args unless explicitly included
filtered_args = args
if not include_self and args and hasattr(args[0], "__dict__"):
# Likely an instance method - skip first arg (self)
filtered_args = args[1:]
# Create a deterministic representation of arguments
key_data = {
"args": [_serialise_arg(arg) for arg in filtered_args],
"kwargs": {k: _serialise_arg(v) for k, v in sorted(kwargs.items())},
}
# Generate hash of arguments
key_json = json.dumps(key_data, sort_keys=True)
args_hash = hashlib.md5(key_json.encode()).hexdigest()[:16]
# Build cache key
parts = [namespace, func_name, args_hash]
if key_prefix:
parts.insert(0, key_prefix)
return ":".join(parts)
def _serialise_arg(arg: Any) -> Any:
"""Serialise argument for cache key generation.
Args:
arg: Argument to serialise.
Returns:
Serialisable representation.
"""
# Handle common types
if isinstance(arg, (str, int, float, bool, type(None))):
return arg
# Handle lists and tuples
if isinstance(arg, (list, tuple)):
return [_serialise_arg(item) for item in arg]
# Handle dictionaries
if isinstance(arg, dict):
return {k: _serialise_arg(v) for k, v in sorted(arg.items())}
# Handle Pydantic models
if hasattr(arg, "model_dump"):
return arg.model_dump()
# Handle objects with __dict__
if hasattr(arg, "__dict__"):
return str(arg.__dict__)
# Fallback to string representation
return str(arg)