File size: 10,897 Bytes
75e697a
9b88b42
75e697a
 
 
 
 
 
 
 
 
 
9b88b42
 
 
6752363
9b88b42
 
 
 
 
9f411df
 
 
 
 
 
9b88b42
75e697a
 
 
9b88b42
 
 
75e697a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6752363
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f411df
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
75e697a
 
9b88b42
 
 
 
75e697a
 
 
 
 
 
 
 
 
 
 
9b88b42
 
 
75e697a
 
 
 
 
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
9f411df
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
75e697a
 
9b88b42
 
75e697a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b88b42
75e697a
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
75e697a
 
9b88b42
75e697a
9b88b42
 
 
 
 
 
75e697a
 
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9f411df
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
75e697a
 
9b88b42
 
75e697a
 
 
 
9b88b42
 
 
75e697a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
9b88b42
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
"""Market Data MCP Server (Provider-Agnostic).

This MCP server provides real-time and historical market data using a configurable
data provider (YFinance, FMP, EODHD, etc.).

Default: YFinance (educational use only)
Production: Set MARKET_DATA_PROVIDER=fmp to use Financial Modeling Prep

Environment Variables:
    MARKET_DATA_PROVIDER: Provider type (yfinance, fmp, eodhd)
    FMP_API_KEY: API key for FMP (if using FMP provider)
    FMP_TIER: FMP subscription tier (free, starter, premium, ultimate)
"""

import logging
from datetime import datetime, timedelta, timezone
from typing import Dict, List, Optional, Any
from decimal import Decimal

from fastmcp import FastMCP
from pydantic import BaseModel, Field
from tenacity import (
    retry,
    stop_after_attempt,
    wait_exponential,
    retry_if_exception_type,
)

from backend.data_providers import get_provider, ProviderType
from backend.data_providers.base import MarketDataProvider

logger = logging.getLogger(__name__)

# Initialize MCP server
mcp = FastMCP("market-data")

# Initialize provider (configured via environment variables)
_provider: Optional[MarketDataProvider] = None


def get_data_provider() -> MarketDataProvider:
    """Get or create the market data provider instance.

    Returns:
        MarketDataProvider: Configured provider instance
    """
    global _provider
    if _provider is None:
        _provider = get_provider()
        logger.info(f"Initialized market data provider: {_provider.name}")
    return _provider


class QuoteRequest(BaseModel):
    """Request for stock quote."""

    tickers: List[str] = Field(..., min_length=1, max_length=50)


class QuoteResponse(BaseModel):
    """Stock quote response."""

    ticker: str
    price: Decimal
    previous_close: Optional[Decimal] = None
    open_price: Optional[Decimal] = None
    high: Optional[Decimal] = None
    low: Optional[Decimal] = None
    volume: Optional[int] = None
    market_cap: Optional[Decimal] = None
    pe_ratio: Optional[Decimal] = None
    dividend_yield: Optional[Decimal] = None
    timestamp: datetime = Field(default_factory=lambda: datetime.now(timezone.utc))


class HistoricalRequest(BaseModel):
    """Request for historical data."""

    ticker: str
    period: str = Field(default="1y", description="Period: 1d,5d,1mo,3mo,6mo,1y,2y,5y,10y,ytd,max")
    interval: str = Field(default="1d", description="Interval: 1m,2m,5m,15m,30m,60m,90m,1h,1d,5d,1wk,1mo,3mo")


class HistoricalResponse(BaseModel):
    """Historical data response."""

    ticker: str
    dates: List[str]
    open_prices: List[Decimal]
    high_prices: List[Decimal]
    low_prices: List[Decimal]
    close_prices: List[Decimal]
    volumes: List[int]
    returns: Optional[List[Decimal]] = None


class FundamentalsRequest(BaseModel):
    """Request for company fundamentals."""

    ticker: str


class FundamentalsResponse(BaseModel):
    """Company fundamentals response."""

    ticker: str
    company_name: Optional[str] = None
    sector: Optional[str] = None
    industry: Optional[str] = None
    market_cap: Optional[Decimal] = None
    pe_ratio: Optional[Decimal] = None
    forward_pe: Optional[Decimal] = None
    peg_ratio: Optional[Decimal] = None
    price_to_book: Optional[Decimal] = None
    dividend_yield: Optional[Decimal] = None
    profit_margin: Optional[Decimal] = None
    operating_margin: Optional[Decimal] = None
    return_on_equity: Optional[Decimal] = None
    revenue_growth: Optional[Decimal] = None
    earnings_growth: Optional[Decimal] = None
    beta: Optional[Decimal] = None
    fifty_two_week_high: Optional[Decimal] = None
    fifty_two_week_low: Optional[Decimal] = None


@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, min=2, max=10),
    retry=retry_if_exception_type((TimeoutError, ConnectionError, Exception)),
)
@mcp.tool()
async def get_quote(request: QuoteRequest) -> List[QuoteResponse]:
    """Get real-time quotes for multiple tickers.

    Args:
        request: Quote request with list of tickers

    Returns:
        List of quote responses

    Example:
        >>> await get_quote(QuoteRequest(tickers=["AAPL", "GOOGL"]))
    """
    provider = get_data_provider()
    logger.info(f"Fetching quotes for {len(request.tickers)} tickers using {provider.name}")

    quotes = []
    for ticker in request.tickers:
        try:
            # Use provider abstraction
            quote_data = provider.get_quote(ticker)

            # Fetch additional fundamentals for PE ratio and dividend yield
            try:
                ratios = provider.get_financial_ratios(ticker)
                pe_ratio = ratios.pe_ratio
                dividend_yield = ratios.dividend_yield
            except:
                pe_ratio = None
                dividend_yield = None

            quote = QuoteResponse(
                ticker=ticker,
                price=quote_data.price,
                previous_close=quote_data.previous_close,
                open_price=quote_data.open,
                high=quote_data.high,
                low=quote_data.low,
                volume=quote_data.volume,
                market_cap=quote_data.market_cap,
                pe_ratio=pe_ratio,
                dividend_yield=dividend_yield,
            )
            quotes.append(quote)
            logger.debug(f"Successfully fetched quote for {ticker}: ${quote.price}")

        except Exception as e:
            logger.error(f"Error fetching quote for {ticker}: {e}")
            # Return a quote with zero price to indicate failure
            quotes.append(QuoteResponse(ticker=ticker, price=Decimal("0")))

    return quotes


@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, min=2, max=10),
    retry=retry_if_exception_type((TimeoutError, ConnectionError, Exception)),
)
@mcp.tool()
async def get_historical_data(request: HistoricalRequest) -> HistoricalResponse:
    """Get historical price data for a ticker.

    Args:
        request: Historical data request

    Returns:
        Historical price data

    Example:
        >>> await get_historical_data(HistoricalRequest(ticker="AAPL", period="1y"))
    """
    provider = get_data_provider()
    logger.info(f"Fetching historical data for {request.ticker}, period={request.period} using {provider.name}")

    try:
        # Convert period to date range
        from datetime import datetime, timedelta

        # Map period to days
        period_map = {
            "1d": 1, "5d": 5, "1mo": 30, "3mo": 90, "6mo": 180,
            "1y": 365, "2y": 730, "5y": 1825, "10y": 3650, "ytd": -1, "max": 7300
        }

        days = period_map.get(request.period, 365)
        end_date = datetime.now()

        if request.period == "ytd":
            start_date = datetime(end_date.year, 1, 1)
        else:
            start_date = end_date - timedelta(days=days)

        # Fetch historical data using provider
        hist_df = provider.get_historical_prices(
            request.ticker,
            start_date.strftime("%Y-%m-%d"),
            end_date.strftime("%Y-%m-%d"),
            interval=request.interval
        )

        if hist_df.empty:
            logger.warning(f"No historical data found for {request.ticker}")
            return HistoricalResponse(
                ticker=request.ticker,
                dates=[],
                open_prices=[],
                high_prices=[],
                low_prices=[],
                close_prices=[],
                volumes=[],
            )

        # Calculate returns
        returns = None
        if len(hist_df) > 1:
            close_prices = hist_df["close"].values
            returns = [
                Decimal(str((float(close_prices[i]) - float(close_prices[i - 1])) / float(close_prices[i - 1])))
                for i in range(1, len(close_prices))
            ]
            returns.insert(0, Decimal("0"))  # First return is 0

        response = HistoricalResponse(
            ticker=request.ticker,
            dates=[date.strftime("%Y-%m-%d") for date in hist_df.index],
            open_prices=list(hist_df["open"]),
            high_prices=list(hist_df["high"]),
            low_prices=list(hist_df["low"]),
            close_prices=list(hist_df["close"]),
            volumes=[int(val) for val in hist_df["volume"].values],
            returns=returns,
        )

        logger.info(f"Fetched {len(response.dates)} data points for {request.ticker}")
        return response

    except Exception as e:
        logger.error(f"Error fetching historical data for {request.ticker}: {e}")
        return HistoricalResponse(
            ticker=request.ticker,
            dates=[],
            open_prices=[],
            high_prices=[],
            low_prices=[],
            volumes=[],
        )


@retry(
    stop=stop_after_attempt(3),
    wait=wait_exponential(multiplier=1, min=2, max=10),
    retry=retry_if_exception_type((TimeoutError, ConnectionError, Exception)),
)
@mcp.tool()
async def get_fundamentals(request: FundamentalsRequest) -> FundamentalsResponse:
    """Get company fundamentals and key metrics.

    Args:
        request: Fundamentals request

    Returns:
        Company fundamentals

    Example:
        >>> await get_fundamentals(FundamentalsRequest(ticker="AAPL"))
    """
    provider = get_data_provider()
    logger.info(f"Fetching fundamentals for {request.ticker} using {provider.name}")

    try:
        # Fetch company profile and financial ratios using provider
        profile = provider.get_company_profile(request.ticker)
        ratios = provider.get_financial_ratios(request.ticker)
        quote = provider.get_quote(request.ticker)

        response = FundamentalsResponse(
            ticker=request.ticker,
            company_name=profile.company_name,
            sector=profile.sector,
            industry=profile.industry,
            market_cap=profile.market_cap or quote.market_cap,
            pe_ratio=ratios.pe_ratio,
            forward_pe=None,  # Not available in all providers
            peg_ratio=None,  # Not available in all providers
            price_to_book=ratios.pb_ratio,
            dividend_yield=ratios.dividend_yield,
            profit_margin=None,  # Could be added to FinancialRatios model if needed
            operating_margin=None,
            return_on_equity=ratios.roe,
            revenue_growth=None,
            earnings_growth=None,
            beta=None,
            fifty_two_week_high=None,
            fifty_two_week_low=None,
        )

        logger.info(f"Successfully fetched fundamentals for {request.ticker}: {response.company_name}")
        return response

    except Exception as e:
        logger.error(f"Error fetching fundamentals for {request.ticker}: {e}")
        return FundamentalsResponse(ticker=request.ticker)


# Export the MCP server
if __name__ == "__main__":
    mcp.run()