Spaces:
Running
on
Zero
Running
on
Zero
File size: 14,504 Bytes
fc49c8c cea2220 fc49c8c cea2220 fc49c8c cea2220 fc49c8c cea2220 1c78117 fc49c8c cea2220 fc49c8c cea2220 fc49c8c cea2220 fc49c8c 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 151bd32 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 cea2220 9b88b42 4cc5533 cea2220 4cc5533 cea2220 4cc5533 cea2220 4cc5533 cea2220 9f411df cea2220 9f411df cea2220 9f411df cea2220 9f411df cea2220 9f411df cea2220 9f411df d038452 cea2220 d038452 cea2220 d038452 cea2220 d038452 cea2220 d038452 cea2220 d038452 cea2220 d038452 cea2220 d038452 cea2220 d038452 9b88b42 fc49c8c cea2220 fc49c8c cea2220 fc49c8c cea2220 fc49c8c cea2220 fc49c8c 9b88b42 cea2220 9b88b42 fc49c8c cea2220 fc49c8c cea2220 fc49c8c 9b88b42 cea2220 9b88b42 fc49c8c cea2220 fc49c8c 9b88b42 cea2220 9b88b42 fc49c8c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 |
"""MCP Router for Portfolio Intelligence Platform.
Compatibility layer that routes to unified mcp_tools module.
This file maintains backwards compatibility with existing code that uses
mcp_router.call_*_mcp() methods.
All actual implementation is now in backend.mcp_tools module.
"""
import json
import logging
from typing import Any, Dict, List
from backend import mcp_tools
from backend.utils.serialisation import dumps_str
logger = logging.getLogger(__name__)
class MCPRouter:
"""Router for orchestrating MCP tool calls.
This is a compatibility layer - all actual implementation
is in backend.mcp_tools module with namespaced functions.
"""
def __init__(self):
"""Initialise MCP router (compatibility layer)."""
logger.info("Initialising MCP router (compatibility layer)")
# Yahoo Finance MCP methods
async def call_yahoo_finance_mcp(
self, tool: str, params: Dict[str, Any]
) -> Dict[str, Any]:
"""Call Yahoo Finance MCP tool (delegates to market_* functions).
Args:
tool: Tool name (get_quote, get_historical_data, get_fundamentals)
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing Yahoo Finance MCP call: {tool}")
if tool == "get_quote":
tickers = params.get("tickers", [])
return await mcp_tools.market_get_quote(dumps_str(tickers))
elif tool == "get_historical_data":
return await mcp_tools.market_get_historical_data(
ticker=params["ticker"],
period=params.get("period", "1y"),
interval=params.get("interval", "1d"),
)
elif tool == "get_fundamentals":
return await mcp_tools.market_get_fundamentals(ticker=params["ticker"])
else:
raise ValueError(f"Unknown Yahoo Finance tool: {tool}")
# FMP MCP methods
async def call_fmp_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
"""Call Financial Modeling Prep MCP tool (delegates to market_* functions).
Args:
tool: Tool name
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing FMP MCP call: {tool}")
if tool == "get_company_profile":
return await mcp_tools.market_get_company_profile(ticker=params["ticker"])
elif tool == "get_income_statement":
return await mcp_tools.market_get_income_statement(
ticker=params["ticker"],
period=params.get("period", "annual"),
limit=str(params.get("limit", 5)),
)
elif tool == "get_balance_sheet":
return await mcp_tools.market_get_balance_sheet(
ticker=params["ticker"],
period=params.get("period", "annual"),
limit=str(params.get("limit", 5)),
)
elif tool == "get_cash_flow_statement":
return await mcp_tools.market_get_cash_flow_statement(
ticker=params["ticker"],
period=params.get("period", "annual"),
limit=str(params.get("limit", 5)),
)
elif tool == "get_financial_ratios":
return await mcp_tools.market_get_financial_ratios(
ticker=params["ticker"],
ttm=str(params.get("ttm", True)).lower(),
)
elif tool == "get_key_metrics":
return await mcp_tools.market_get_key_metrics(
ticker=params["ticker"],
ttm=str(params.get("ttm", True)).lower(),
)
else:
raise ValueError(f"Unknown FMP tool: {tool}")
# Trading MCP methods
async def call_trading_mcp(
self, tool: str, params: Dict[str, Any]
) -> Dict[str, Any]:
"""Call Trading MCP tool (delegates to technical_* functions).
Args:
tool: Tool name
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing Trading MCP call: {tool}")
if tool == "get_technical_indicators":
return await mcp_tools.technical_get_indicators(
ticker=params["ticker"],
period=params.get("period", "3mo"),
)
else:
raise ValueError(f"Unknown Trading MCP tool: {tool}")
# FRED MCP methods
async def call_fred_mcp(self, tool: str, params: Dict[str, Any]) -> Dict[str, Any]:
"""Call FRED MCP tool (delegates to market_* functions).
Args:
tool: Tool name
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing FRED MCP call: {tool}")
if tool == "get_economic_series":
return await mcp_tools.market_get_economic_series(
series_id=params["series_id"],
observation_start=params.get("observation_start"),
observation_end=params.get("observation_end"),
)
else:
raise ValueError(f"Unknown FRED tool: {tool}")
# Portfolio Optimizer MCP methods
async def call_portfolio_optimizer_mcp(
self, tool: str, params: Dict[str, Any]
) -> Dict[str, Any]:
"""Call Portfolio Optimizer MCP tool (delegates to portfolio_* functions).
Args:
tool: Tool name
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing Portfolio Optimizer MCP call: {tool}")
market_data = params.get("market_data", [])
market_data_json = dumps_str(market_data)
risk_tolerance = params.get("risk_tolerance", "moderate")
if tool == "optimize_hrp":
return await mcp_tools.portfolio_optimize_hrp(
market_data_json=market_data_json,
risk_tolerance=risk_tolerance,
)
elif tool == "optimize_black_litterman":
return await mcp_tools.portfolio_optimize_black_litterman(
market_data_json=market_data_json,
risk_tolerance=risk_tolerance,
)
elif tool == "optimize_mean_variance":
return await mcp_tools.portfolio_optimize_mean_variance(
market_data_json=market_data_json,
risk_tolerance=risk_tolerance,
)
else:
raise ValueError(f"Unknown Portfolio Optimizer tool: {tool}")
# Risk Analyzer MCP methods
async def call_risk_analyzer_mcp(
self, tool: str, params: Dict[str, Any]
) -> Dict[str, Any]:
"""Call Risk Analyzer MCP tool (delegates to risk_* functions).
Args:
tool: Tool name
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing Risk Analyzer MCP call: {tool}")
if tool == "analyze_risk":
portfolio = params.get("portfolio", [])
benchmark = params.get("benchmark")
return await mcp_tools.risk_analyze(
portfolio_json=dumps_str(portfolio),
portfolio_value=str(params.get("portfolio_value", 100000)),
confidence_level=str(params.get("confidence_level", 0.95)),
time_horizon=str(params.get("time_horizon", 1)),
method=params.get("method", "historical"),
num_simulations=str(params.get("num_simulations", 10000)),
benchmark_json=dumps_str(benchmark) if benchmark else None,
)
elif tool == "forecast_volatility_garch":
returns = params.get("returns", [])
return await mcp_tools.risk_forecast_volatility_garch(
ticker=params["ticker"],
returns_json=dumps_str([float(r) for r in returns]),
forecast_horizon=str(params.get("forecast_horizon", 30)),
garch_p=str(params.get("garch_p", 1)),
garch_q=str(params.get("garch_q", 1)),
)
else:
raise ValueError(f"Unknown Risk Analyzer tool: {tool}")
# Ensemble Predictor MCP methods
async def call_ensemble_predictor_mcp(
self, tool: str, params: Dict[str, Any]
) -> Dict[str, Any]:
"""Call Ensemble Predictor MCP tool (delegates to ml_* functions).
Args:
tool: Tool name
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing Ensemble Predictor MCP call: {tool}")
if tool == "forecast_ensemble":
prices = params.get("prices", [])
dates = params.get("dates")
return await mcp_tools.ml_forecast_ensemble(
ticker=params["ticker"],
prices_json=dumps_str([float(p) for p in prices]),
dates_json=dumps_str(dates) if dates else None,
forecast_horizon=str(params.get("forecast_horizon", 30)),
confidence_level=str(params.get("confidence_level", 0.95)),
use_returns=str(params.get("use_returns", True)).lower(),
ensemble_method=params.get("ensemble_method", "mean"),
)
else:
raise ValueError(f"Unknown Ensemble Predictor tool: {tool}")
# News Sentiment MCP methods
async def call_news_sentiment_mcp(
self, tool: str, params: Dict[str, Any]
) -> Dict[str, Any]:
"""Call News Sentiment MCP tool (delegates to sentiment_* functions).
Args:
tool: Tool name
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing News Sentiment MCP call: {tool}")
if tool == "get_news_with_sentiment":
return await mcp_tools.sentiment_get_news(
ticker=params["ticker"],
days_back=str(params.get("days_back", 7)),
)
else:
raise ValueError(f"Unknown News Sentiment tool: {tool}")
# Feature Extraction MCP methods
async def call_feature_extraction_mcp(
self, tool: str, params: Dict[str, Any]
) -> Dict[str, Any]:
"""Call Feature Extraction MCP tool (delegates to technical_* functions).
Args:
tool: Tool name
params: Tool parameters
Returns:
Tool result
"""
logger.debug(f"Routing Feature Extraction MCP call: {tool}")
if tool == "extract_technical_features":
return await mcp_tools.technical_extract_features(
ticker=params["ticker"],
prices=dumps_str(params.get("prices", [])),
volumes=dumps_str(params.get("volumes", [])),
include_momentum=str(params.get("include_momentum", True)).lower(),
include_volatility=str(params.get("include_volatility", True)).lower(),
include_trend=str(params.get("include_trend", True)).lower(),
)
elif tool == "normalise_features":
return await mcp_tools.technical_normalise_features(
ticker=params["ticker"],
features=dumps_str(params.get("features", {})),
historical_features=dumps_str(params.get("historical_features", [])),
window_size=str(params.get("window_size", 100)),
method=params.get("method", "ewm"),
)
elif tool == "select_features":
return await mcp_tools.technical_select_features(
ticker=params["ticker"],
feature_vector=dumps_str(params.get("feature_vector", {})),
max_features=str(params.get("max_features", 15)),
variance_threshold=str(params.get("variance_threshold", 0.95)),
)
elif tool == "compute_feature_vector":
return await mcp_tools.technical_compute_feature_vector(
ticker=params["ticker"],
technical_features=dumps_str(params.get("technical_features", {})),
fundamental_features=dumps_str(params.get("fundamental_features", {})),
sentiment_features=dumps_str(params.get("sentiment_features", {})),
max_features=str(params.get("max_features", 30)),
selection_method=params.get("selection_method", "pca"),
)
else:
raise ValueError(f"Unknown Feature Extraction tool: {tool}")
# High-level helper methods
async def fetch_market_data(self, tickers: List[str]) -> Dict[str, Any]:
"""Fetch market data for given tickers.
Args:
tickers: List of stock/asset tickers
Returns:
Market data from Yahoo Finance
"""
logger.info(f"Fetching market data for {len(tickers)} tickers")
results = await mcp_tools.market_get_quote(dumps_str(tickers))
return {r.get("ticker", r.get("symbol")): r for r in results}
async def fetch_fundamentals(self, tickers: List[str]) -> Dict[str, Any]:
"""Fetch fundamental data for tickers.
Args:
tickers: List of stock tickers
Returns:
Fundamental data per ticker
"""
logger.info(f"Fetching fundamentals for {len(tickers)} tickers")
results = {}
for ticker in tickers:
results[ticker] = await mcp_tools.market_get_company_profile(ticker)
return results
async def fetch_technical_indicators(self, tickers: List[str]) -> Dict[str, Any]:
"""Fetch technical indicators for tickers.
Args:
tickers: List of stock tickers
Returns:
Technical indicators per ticker
"""
logger.info(f"Fetching technical indicators for {len(tickers)} tickers")
results = {}
for ticker in tickers:
results[ticker] = await mcp_tools.technical_get_indicators(ticker)
return results
async def fetch_macro_data(self) -> Dict[str, Any]:
"""Fetch macroeconomic data from FRED.
Returns:
Macroeconomic indicators
"""
logger.info("Fetching macroeconomic data")
results = {}
for series_id in ["GDP", "UNRATE", "DFF"]:
results[series_id] = await mcp_tools.market_get_economic_series(series_id)
return results
# Global MCP router instance
mcp_router = MCPRouter()
|