Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,626 Bytes
5ab6829 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 |
"""Export functionality for portfolio analyses.
Provides PDF and CSV export capabilities for analysis results.
"""
import io
from typing import Dict, Any, List, Optional
from decimal import Decimal
from datetime import datetime
import csv
import logging
from reportlab.lib import colors
from reportlab.lib.pagesizes import letter, A4
from reportlab.platypus import SimpleDocTemplate, Table, TableStyle, Paragraph, Spacer, PageBreak
from reportlab.lib.styles import getSampleStyleSheet, ParagraphStyle
from reportlab.lib.units import inch
logger = logging.getLogger(__name__)
def export_analysis_to_csv(analysis_results: Dict[str, Any]) -> str:
"""Export analysis results to CSV format.
Args:
analysis_results: Complete analysis results dictionary
Returns:
CSV string ready for download
"""
output = io.StringIO()
writer = csv.writer(output)
# Headers
writer.writerow(["Portfolio Analysis Export"])
writer.writerow(["Generated:", datetime.now().isoformat()])
writer.writerow([])
# Holdings
writer.writerow(["Portfolio Holdings"])
writer.writerow(["Ticker", "Quantity", "Market Value", "Weight %"])
holdings = analysis_results.get('holdings', [])
for holding in holdings:
ticker = holding.get('ticker', '')
quantity = holding.get('quantity', 0)
market_value = holding.get('market_value', 0)
weight = holding.get('weight', 0) * 100
writer.writerow([ticker, quantity, f"£{market_value:,.2f}", f"{weight:.2f}%"])
writer.writerow([])
# Key Metrics
writer.writerow(["Key Metrics"])
risk_analysis = analysis_results.get('risk_analysis', {})
risk_metrics = risk_analysis.get('risk_metrics', {})
writer.writerow(["Metric", "Value"])
writer.writerow(["Sharpe Ratio", risk_metrics.get('sharpe_ratio', 'N/A')])
volatility = risk_metrics.get('volatility_annual', 0)
if isinstance(volatility, (int, float)):
writer.writerow(["Volatility", f"{volatility*100:.2f}%"])
else:
writer.writerow(["Volatility", str(volatility)])
var_95 = risk_analysis.get('var_95', {})
var_value = var_95.get('var_percentage', 'N/A') if isinstance(var_95, dict) else var_95
writer.writerow(["VaR (95%)", f"{var_value}%"])
cvar_95 = risk_analysis.get('cvar_95', {})
cvar_value = cvar_95.get('cvar_percentage', 'N/A') if isinstance(cvar_95, dict) else cvar_95
writer.writerow(["CVaR (95%)", f"{cvar_value}%"])
writer.writerow([])
# AI Synthesis
writer.writerow(["AI Analysis"])
ai_synthesis = analysis_results.get('ai_synthesis', '')
if ai_synthesis:
# Split into lines for better CSV formatting
for line in ai_synthesis.split('\n'):
if line.strip():
writer.writerow([line.strip()])
writer.writerow([])
# Recommendations
writer.writerow(["Recommendations"])
recommendations = analysis_results.get('recommendations', [])
for i, rec in enumerate(recommendations, 1):
writer.writerow([f"{i}.", rec])
return output.getvalue()
def export_analysis_to_pdf(analysis_results: Dict[str, Any]) -> bytes:
"""Export analysis results to PDF format.
Args:
analysis_results: Complete analysis results dictionary
Returns:
PDF bytes ready for download
"""
buffer = io.BytesIO()
doc = SimpleDocTemplate(buffer, pagesize=letter)
story = []
styles = getSampleStyleSheet()
# Title
title_style = ParagraphStyle(
'CustomTitle',
parent=styles['Heading1'],
fontSize=24,
textColor=colors.HexColor('#05478A'),
spaceAfter=30,
)
story.append(Paragraph("Portfolio Analysis Report", title_style))
story.append(Paragraph(f"Generated: {datetime.now().strftime('%Y-%m-%d %H:%M')}", styles['Normal']))
story.append(Spacer(1, 0.5*inch))
# Holdings Table
story.append(Paragraph("Portfolio Holdings", styles['Heading2']))
holdings = analysis_results.get('holdings', [])
holdings_data = [["Ticker", "Quantity", "Market Value", "Weight %"]]
for holding in holdings:
ticker = holding.get('ticker', '')
quantity = holding.get('quantity', 0)
market_value = holding.get('market_value', 0)
weight = holding.get('weight', 0) * 100
holdings_data.append([
ticker,
f"{quantity:.2f}",
f"£{market_value:,.2f}",
f"{weight:.2f}%"
])
holdings_table = Table(holdings_data)
holdings_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#05478A')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'CENTER'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.beige),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(holdings_table)
story.append(Spacer(1, 0.5*inch))
# Key Metrics
story.append(Paragraph("Key Metrics", styles['Heading2']))
risk_analysis = analysis_results.get('risk_analysis', {})
risk_metrics = risk_analysis.get('risk_metrics', {})
metrics_data = [["Metric", "Value"]]
metrics_data.append(["Sharpe Ratio", f"{risk_metrics.get('sharpe_ratio', 0):.3f}"])
volatility = risk_metrics.get('volatility_annual', 0)
if isinstance(volatility, (int, float)):
metrics_data.append(["Volatility", f"{volatility*100:.2f}%"])
else:
metrics_data.append(["Volatility", str(volatility)])
var_95 = risk_analysis.get('var_95', {})
var_value = var_95.get('var_percentage', 0) if isinstance(var_95, dict) else var_95
metrics_data.append(["VaR (95%)", f"{var_value:.2f}%"])
cvar_95 = risk_analysis.get('cvar_95', {})
cvar_value = cvar_95.get('cvar_percentage', 0) if isinstance(cvar_95, dict) else cvar_95
metrics_data.append(["CVaR (95%)", f"{cvar_value:.2f}%"])
metrics_table = Table(metrics_data)
metrics_table.setStyle(TableStyle([
('BACKGROUND', (0, 0), (-1, 0), colors.HexColor('#048CFC')),
('TEXTCOLOR', (0, 0), (-1, 0), colors.whitesmoke),
('ALIGN', (0, 0), (-1, -1), 'LEFT'),
('FONTNAME', (0, 0), (-1, 0), 'Helvetica-Bold'),
('FONTSIZE', (0, 0), (-1, 0), 12),
('BOTTOMPADDING', (0, 0), (-1, 0), 12),
('BACKGROUND', (0, 1), (-1, -1), colors.lightblue),
('GRID', (0, 0), (-1, -1), 1, colors.black)
]))
story.append(metrics_table)
story.append(Spacer(1, 0.5*inch))
# AI Synthesis
story.append(Paragraph("AI Analysis", styles['Heading2']))
ai_synthesis = analysis_results.get('ai_synthesis', '')
if ai_synthesis:
# Clean and format the text
paragraphs = ai_synthesis.split('\n\n')
for para in paragraphs:
if para.strip():
story.append(Paragraph(para.strip(), styles['Normal']))
story.append(Spacer(1, 0.1*inch))
# Recommendations
story.append(Spacer(1, 0.3*inch))
story.append(Paragraph("Recommendations", styles['Heading2']))
recommendations = analysis_results.get('recommendations', [])
for i, rec in enumerate(recommendations, 1):
story.append(Paragraph(f"{i}. {rec}", styles['Normal']))
story.append(Spacer(1, 0.1*inch))
# Build PDF
try:
doc.build(story)
except Exception as e:
logger.error(f"Failed to build PDF: {e}")
raise
buffer.seek(0)
return buffer.getvalue()
|