File size: 14,114 Bytes
f8ba6bf |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 |
"""
DungeonMaster AI - Text Processor for Voice Synthesis
Preprocesses text for optimal TTS synthesis, including abbreviation expansion,
dice notation conversion, dialogue detection, and dramatic pause insertion.
"""
from __future__ import annotations
import logging
import re
from typing import TYPE_CHECKING, Mapping
from .models import ProcessedNarration, TextSegment, VoiceType
from .voice_profiles import select_voice_for_context
if TYPE_CHECKING:
pass
logger = logging.getLogger(__name__)
class NarrationProcessor:
"""
Preprocesses text for optimal TTS synthesis.
Handles:
- D&D abbreviation expansion (HP β hit points)
- Dice notation conversion (2d6 β two dee six)
- Markdown cleanup
- Dramatic pause insertion
- Dialogue detection and speaker splitting
"""
# D&D abbreviation expansions (uppercase keys for matching)
ABBREVIATIONS: Mapping[str, str] = {
"HP": "hit points",
"AC": "armor class",
"DC": "difficulty class",
"DM": "Dungeon Master",
"NPC": "N P C",
"PC": "player character",
"XP": "experience points",
"GP": "gold pieces",
"SP": "silver pieces",
"CP": "copper pieces",
"EP": "electrum pieces",
"PP": "platinum pieces",
"STR": "Strength",
"DEX": "Dexterity",
"CON": "Constitution",
"INT": "Intelligence",
"WIS": "Wisdom",
"CHA": "Charisma",
"ATK": "attack",
"DMG": "damage",
"INIT": "initiative",
"LVL": "level",
"HD": "hit dice",
"CR": "challenge rating",
"AOE": "area of effect",
"AOO": "attack of opportunity",
}
# Dice notation pattern: matches "1d20", "2d6+3", "d8-1", etc.
DICE_PATTERN = re.compile(
r"(\d*)d(\d+)([+-]\d+)?",
re.IGNORECASE,
)
# Dialogue detection patterns
DIALOGUE_DOUBLE_QUOTE = re.compile(r'"([^"]+)"')
DIALOGUE_SINGLE_QUOTE = re.compile(r"'([^']+)'")
# Number words for TTS
NUMBER_WORDS: Mapping[int, str] = {
1: "one",
2: "two",
3: "three",
4: "four",
5: "five",
6: "six",
7: "seven",
8: "eight",
9: "nine",
10: "ten",
11: "eleven",
12: "twelve",
20: "twenty",
100: "one hundred",
}
# Dramatic words that benefit from a pause before them
DRAMATIC_WORDS = frozenset([
"suddenly",
"however",
"but",
"then",
"finally",
"unfortunately",
"meanwhile",
"beware",
"alas",
"behold",
])
# Average characters per second for duration estimation
CHARS_PER_SECOND = 15
def __init__(self) -> None:
"""Initialize the narration processor."""
# Pre-compile abbreviation patterns for efficiency
self._abbreviation_patterns: dict[str, re.Pattern[str]] = {}
for abbr in self.ABBREVIATIONS:
# Word boundary pattern for each abbreviation
self._abbreviation_patterns[abbr] = re.compile(
rf"\b{abbr}\b",
re.IGNORECASE,
)
def process_for_tts(self, text: str) -> str:
"""
Clean and prepare text for TTS synthesis.
Operations:
1. Expand D&D abbreviations
2. Convert dice notation to spoken form
3. Clean markdown formatting
4. Normalize whitespace
Args:
text: Raw input text.
Returns:
Cleaned text ready for TTS.
"""
result = text
# Expand abbreviations (case-insensitive)
for abbr, expansion in self.ABBREVIATIONS.items():
result = self._abbreviation_patterns[abbr].sub(expansion, result)
# Convert dice notation
result = self.DICE_PATTERN.sub(self._convert_dice_notation, result)
# Clean markdown formatting
result = self._clean_markdown(result)
# Normalize whitespace
result = " ".join(result.split())
return result.strip()
def add_dramatic_pauses(self, text: str) -> str:
"""
Insert timing markers for dramatic effect.
Uses natural punctuation since ElevenLabs respects pauses.
Args:
text: Text to add pauses to.
Returns:
Text with dramatic pauses inserted.
"""
result = text
# Normalize ellipsis (ensure space after)
result = re.sub(r"\.{3,}", "... ", result)
# Add slight pause before dramatic words
for word in self.DRAMATIC_WORDS:
# Match word at start of sentence or after space
pattern = rf"(\s)({word})\b"
result = re.sub(
pattern,
r"\1... \2",
result,
flags=re.IGNORECASE,
)
# Clean up any double spaces created
result = " ".join(result.split())
return result
def handle_dialogue(
self,
text: str,
default_npc_voice: VoiceType = VoiceType.NPC_MALE_GRUFF,
) -> list[TextSegment]:
"""
Split text into segments with speaker detection.
Detects quoted text as dialogue and assigns appropriate voice types.
Args:
text: Text containing potential dialogue.
default_npc_voice: Voice type to use for dialogue if not specified.
Returns:
List of TextSegments with appropriate voice assignments.
"""
segments: list[TextSegment] = []
last_end = 0
# Find all dialogue (double quotes)
for match in self.DIALOGUE_DOUBLE_QUOTE.finditer(text):
# Add narration before dialogue
if match.start() > last_end:
narration = text[last_end : match.start()].strip()
if narration:
segments.append(
TextSegment(
text=self.process_for_tts(narration),
voice_type=VoiceType.DM,
is_dialogue=False,
)
)
# Add dialogue
dialogue = match.group(1)
segments.append(
TextSegment(
text=self.process_for_tts(dialogue),
voice_type=default_npc_voice,
is_dialogue=True,
pause_before_ms=100, # Brief pause before dialogue
pause_after_ms=100, # Brief pause after dialogue
)
)
last_end = match.end()
# Add remaining narration
if last_end < len(text):
remaining = text[last_end:].strip()
if remaining:
segments.append(
TextSegment(
text=self.process_for_tts(remaining),
voice_type=VoiceType.DM,
is_dialogue=False,
)
)
# If no dialogue found, return single DM segment
if not segments:
segments.append(
TextSegment(
text=self.process_for_tts(text),
voice_type=VoiceType.DM,
is_dialogue=False,
)
)
return segments
def detect_voice_type(
self,
text: str,
context: dict[str, object] | None = None,
) -> VoiceType:
"""
Analyze text and context to determine appropriate voice type.
Args:
text: Text to analyze.
context: Game context dictionary with keys like:
- in_combat: bool
- current_npc: dict | None
Returns:
VoiceType to use for this text.
"""
context = context or {}
# Check for current NPC
current_npc = context.get("current_npc")
if current_npc and isinstance(current_npc, dict):
from .voice_profiles import select_voice_from_npc_data
return select_voice_from_npc_data(current_npc)
# Check if text contains dialogue
has_dialogue = bool(
self.DIALOGUE_DOUBLE_QUOTE.search(text)
or self.DIALOGUE_SINGLE_QUOTE.search(text)
)
# Get combat state
in_combat = bool(context.get("in_combat", False))
return select_voice_for_context(
is_dialogue=has_dialogue,
is_combat=in_combat,
)
def split_by_speaker(
self,
text: str,
context: dict[str, object] | None = None,
) -> list[tuple[str, VoiceType]]:
"""
Split response into segments by speaker.
Convenience method that returns simpler tuple format.
Args:
text: Text to split.
context: Game context for voice selection.
Returns:
List of (text, voice_type) tuples.
"""
context = context or {}
# Determine NPC voice from context
npc_voice = VoiceType.NPC_MALE_GRUFF
current_npc = context.get("current_npc")
if current_npc and isinstance(current_npc, dict):
from .voice_profiles import select_voice_from_npc_data
npc_voice = select_voice_from_npc_data(current_npc)
segments = self.handle_dialogue(text, default_npc_voice=npc_voice)
return [(seg.text, seg.voice_type) for seg in segments]
def process(
self,
text: str,
context: dict[str, object] | None = None,
add_pauses: bool = True,
) -> ProcessedNarration:
"""
Full processing pipeline for narration.
Args:
text: Raw text to process.
context: Game context for voice selection.
add_pauses: Whether to add dramatic pauses.
Returns:
ProcessedNarration with all segments and metadata.
"""
context = context or {}
# Get segments with voice assignments
npc_voice = VoiceType.NPC_MALE_GRUFF
current_npc = context.get("current_npc")
if current_npc and isinstance(current_npc, dict):
from .voice_profiles import select_voice_from_npc_data
npc_voice = select_voice_from_npc_data(current_npc)
segments = self.handle_dialogue(text, default_npc_voice=npc_voice)
# Add dramatic pauses if requested
if add_pauses:
for segment in segments:
segment.text = self.add_dramatic_pauses(segment.text)
# Build complete text
total_text = " ".join(seg.text for seg in segments)
# Determine primary voice
primary_voice = VoiceType.DM
for seg in segments:
if not seg.is_dialogue:
primary_voice = seg.voice_type
break
# Check for dialogue
has_dialogue = any(seg.is_dialogue for seg in segments)
# Estimate duration
estimated_duration = int((len(total_text) / self.CHARS_PER_SECOND) * 1000)
return ProcessedNarration(
segments=segments,
total_text=total_text,
primary_voice=primary_voice,
has_dialogue=has_dialogue,
estimated_duration_ms=estimated_duration,
)
def _convert_dice_notation(self, match: re.Match[str]) -> str:
"""
Convert dice notation to speakable text.
Examples:
- "1d20" β "one dee twenty"
- "2d6+3" β "two dee six plus three"
- "d8" β "one dee eight"
"""
num_dice = match.group(1) or "1"
die_size = match.group(2)
modifier = match.group(3)
# Convert numbers to words where available
num_dice_int = int(num_dice)
die_size_int = int(die_size)
num_word = self.NUMBER_WORDS.get(num_dice_int, num_dice)
die_word = self.NUMBER_WORDS.get(die_size_int, die_size)
result = f"{num_word} dee {die_word}"
if modifier:
mod_sign = modifier[0]
mod_value = modifier[1:]
if mod_sign == "+":
result += f" plus {mod_value}"
elif mod_sign == "-":
result += f" minus {mod_value}"
return result
def _clean_markdown(self, text: str) -> str:
"""
Remove markdown formatting from text.
Args:
text: Text with potential markdown.
Returns:
Plain text without markdown.
"""
result = text
# Remove bold/italic markers
result = re.sub(r"\*\*([^*]+)\*\*", r"\1", result) # **bold**
result = re.sub(r"\*([^*]+)\*", r"\1", result) # *italic*
result = re.sub(r"__([^_]+)__", r"\1", result) # __bold__
result = re.sub(r"_([^_]+)_", r"\1", result) # _italic_
# Remove headers
result = re.sub(r"^#+\s*", "", result, flags=re.MULTILINE)
# Remove horizontal rules
result = re.sub(r"^[-*_]{3,}\s*$", "", result, flags=re.MULTILINE)
# Remove bullet points (keep text)
result = re.sub(r"^\s*[-*+]\s+", "", result, flags=re.MULTILINE)
# Remove numbered lists (keep text)
result = re.sub(r"^\s*\d+\.\s+", "", result, flags=re.MULTILINE)
# Remove links but keep text: [text](url) β text
result = re.sub(r"\[([^\]]+)\]\([^)]+\)", r"\1", result)
# Remove inline code
result = re.sub(r"`([^`]+)`", r"\1", result)
# Remove code blocks
result = re.sub(r"```[\s\S]*?```", "", result)
return result
def estimate_duration_ms(self, text: str) -> int:
"""
Estimate audio duration for text.
Args:
text: Text to estimate duration for.
Returns:
Estimated duration in milliseconds.
"""
# Process text first to get accurate character count
processed = self.process_for_tts(text)
return int((len(processed) / self.CHARS_PER_SECOND) * 1000)
|