Added provider-specific prompt infrastructure; thinking and progress indicators to chat ui
Browse files- app.py +31 -4
- docs/dev/prompts_config-README.md +98 -0
- langgraph_agent/agents.py +5 -3
- langgraph_agent/prompts.py +181 -2
- langgraph_agent/subagent_config.py +26 -10
- langgraph_agent/subagent_factory.py +11 -6
- langgraph_agent/subagent_supervisor.py +8 -7
app.py
CHANGED
|
@@ -691,7 +691,8 @@ async def chat_with_tool_visibility(
|
|
| 691 |
openai_key,
|
| 692 |
anthropic_key,
|
| 693 |
agent_mode,
|
| 694 |
-
request: gr.Request
|
|
|
|
| 695 |
):
|
| 696 |
"""
|
| 697 |
Dual-output streaming: chat response + tool execution log
|
|
@@ -729,6 +730,8 @@ async def chat_with_tool_visibility(
|
|
| 729 |
# -------------------------------------------------------------------------
|
| 730 |
# 2. GET OR CREATE AGENT
|
| 731 |
# -------------------------------------------------------------------------
|
|
|
|
|
|
|
| 732 |
try:
|
| 733 |
session_id = request.session_hash
|
| 734 |
|
|
@@ -750,6 +753,8 @@ async def chat_with_tool_visibility(
|
|
| 750 |
yield f"**Agent Creation Failed**\n\n{str(e)}", "*Agent creation failed*"
|
| 751 |
return
|
| 752 |
|
|
|
|
|
|
|
| 753 |
config = {"configurable": {"thread_id": session_id}}
|
| 754 |
|
| 755 |
# -------------------------------------------------------------------------
|
|
@@ -817,6 +822,12 @@ async def chat_with_tool_visibility(
|
|
| 817 |
# -------------------------------------------------------------------------
|
| 818 |
# 4. STREAM AGENT RESPONSE WITH TOOL VISIBILITY
|
| 819 |
# -------------------------------------------------------------------------
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 820 |
print(f"[DEBUG AGENT INPUT] Sending to agent: {user_text}") # DEBUG
|
| 821 |
async for event in agent.astream_events(
|
| 822 |
{"messages": [{"role": "user", "content": user_text}]},
|
|
@@ -831,6 +842,9 @@ async def chat_with_tool_visibility(
|
|
| 831 |
tool_name = event["name"]
|
| 832 |
tool_input = event.get("data", {}).get("input", {})
|
| 833 |
|
|
|
|
|
|
|
|
|
|
| 834 |
# Add to tool log
|
| 835 |
tool_log += f"\n🟢 Tool #{tool_count}: {tool_name}\n"
|
| 836 |
tool_log += f"Status: Running...\n"
|
|
@@ -845,6 +859,11 @@ async def chat_with_tool_visibility(
|
|
| 845 |
elif kind == "on_chat_model_stream":
|
| 846 |
content = event["data"]["chunk"].content
|
| 847 |
if content:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 848 |
# Handle both string (OpenAI) and list (Anthropic) content formats
|
| 849 |
if isinstance(content, list):
|
| 850 |
# Anthropic returns list of content blocks - extract text
|
|
@@ -862,6 +881,9 @@ async def chat_with_tool_visibility(
|
|
| 862 |
elif kind == "on_tool_end":
|
| 863 |
tool_output = event.get("data", {}).get("output", "")
|
| 864 |
|
|
|
|
|
|
|
|
|
|
| 865 |
# Format output for tool log (truncate if needed)
|
| 866 |
output_str = str(tool_output)
|
| 867 |
if len(output_str) > 1000:
|
|
@@ -879,9 +901,11 @@ async def chat_with_tool_visibility(
|
|
| 879 |
|
| 880 |
yield chat_response, tool_log
|
| 881 |
|
| 882 |
-
# Final yield
|
| 883 |
## NEW: Updated with LlamaIndex OutputPraser
|
| 884 |
# yield chat_response, tool_log
|
|
|
|
|
|
|
| 885 |
try:
|
| 886 |
from langgraph_agent.structured_output import parse_agent_response
|
| 887 |
formatted_response = await parse_agent_response(
|
|
@@ -890,13 +914,16 @@ async def chat_with_tool_visibility(
|
|
| 890 |
api_key=api_key,
|
| 891 |
model=model
|
| 892 |
)
|
|
|
|
| 893 |
yield formatted_response, tool_log
|
| 894 |
except ImportError:
|
| 895 |
# Fallback if LlamaIndex not installed
|
|
|
|
| 896 |
yield chat_response, tool_log
|
| 897 |
except Exception as e:
|
| 898 |
# Fallback if parsing fails
|
| 899 |
print(f"[STRUCTURED OUTPUT ERROR]: {e}")
|
|
|
|
| 900 |
yield chat_response, tool_log
|
| 901 |
|
| 902 |
|
|
@@ -947,7 +974,7 @@ async def check_modal_server_health():
|
|
| 947 |
return f"❌ Offline"
|
| 948 |
|
| 949 |
# Wrapper to convert to Gradio 6 message format
|
| 950 |
-
async def chat_wrapper(message, history, provider, hf_key, openai_key, anthropic_key, agent_mode, tool_log_state, request: gr.Request):
|
| 951 |
"""
|
| 952 |
Wrapper to convert chat outputs to Gradio 6 message format.
|
| 953 |
|
|
@@ -966,7 +993,7 @@ async def chat_wrapper(message, history, provider, hf_key, openai_key, anthropic
|
|
| 966 |
history = history + [{"role": "user", "content": user_message_text}]
|
| 967 |
|
| 968 |
# Stream response
|
| 969 |
-
async for chat_text, tool_log_text in chat_with_tool_visibility(message, history, provider, hf_key, openai_key, anthropic_key, agent_mode, request):
|
| 970 |
# Update history with assistant response
|
| 971 |
updated_history = history + [{"role": "assistant", "content": chat_text}]
|
| 972 |
yield updated_history, tool_log_text
|
|
|
|
| 691 |
openai_key,
|
| 692 |
anthropic_key,
|
| 693 |
agent_mode,
|
| 694 |
+
request: gr.Request,
|
| 695 |
+
progress=gr.Progress()
|
| 696 |
):
|
| 697 |
"""
|
| 698 |
Dual-output streaming: chat response + tool execution log
|
|
|
|
| 730 |
# -------------------------------------------------------------------------
|
| 731 |
# 2. GET OR CREATE AGENT
|
| 732 |
# -------------------------------------------------------------------------
|
| 733 |
+
progress(0.1, desc="🔧 Initializing agent...")
|
| 734 |
+
|
| 735 |
try:
|
| 736 |
session_id = request.session_hash
|
| 737 |
|
|
|
|
| 753 |
yield f"**Agent Creation Failed**\n\n{str(e)}", "*Agent creation failed*"
|
| 754 |
return
|
| 755 |
|
| 756 |
+
progress(0.3, desc="🤖 Agent ready...")
|
| 757 |
+
|
| 758 |
config = {"configurable": {"thread_id": session_id}}
|
| 759 |
|
| 760 |
# -------------------------------------------------------------------------
|
|
|
|
| 822 |
# -------------------------------------------------------------------------
|
| 823 |
# 4. STREAM AGENT RESPONSE WITH TOOL VISIBILITY
|
| 824 |
# -------------------------------------------------------------------------
|
| 825 |
+
# Initial "thinking" indicator
|
| 826 |
+
progress(0.5, desc="💭 Thinking...")
|
| 827 |
+
chat_response = "💭 _Thinking..._"
|
| 828 |
+
tool_log += "🔵 Agent started processing...\n"
|
| 829 |
+
yield chat_response, tool_log
|
| 830 |
+
|
| 831 |
print(f"[DEBUG AGENT INPUT] Sending to agent: {user_text}") # DEBUG
|
| 832 |
async for event in agent.astream_events(
|
| 833 |
{"messages": [{"role": "user", "content": user_text}]},
|
|
|
|
| 842 |
tool_name = event["name"]
|
| 843 |
tool_input = event.get("data", {}).get("input", {})
|
| 844 |
|
| 845 |
+
# Update progress
|
| 846 |
+
progress(0.6 + (tool_count * 0.05), desc=f"🔍 Using {tool_name}...")
|
| 847 |
+
|
| 848 |
# Add to tool log
|
| 849 |
tool_log += f"\n🟢 Tool #{tool_count}: {tool_name}\n"
|
| 850 |
tool_log += f"Status: Running...\n"
|
|
|
|
| 859 |
elif kind == "on_chat_model_stream":
|
| 860 |
content = event["data"]["chunk"].content
|
| 861 |
if content:
|
| 862 |
+
# Clear "Thinking..." on first real content
|
| 863 |
+
if chat_response == "💭 _Thinking..._":
|
| 864 |
+
chat_response = ""
|
| 865 |
+
progress(0.7, desc="📝 Generating response...")
|
| 866 |
+
|
| 867 |
# Handle both string (OpenAI) and list (Anthropic) content formats
|
| 868 |
if isinstance(content, list):
|
| 869 |
# Anthropic returns list of content blocks - extract text
|
|
|
|
| 881 |
elif kind == "on_tool_end":
|
| 882 |
tool_output = event.get("data", {}).get("output", "")
|
| 883 |
|
| 884 |
+
# Update progress
|
| 885 |
+
progress(0.8, desc="📊 Processing results...")
|
| 886 |
+
|
| 887 |
# Format output for tool log (truncate if needed)
|
| 888 |
output_str = str(tool_output)
|
| 889 |
if len(output_str) > 1000:
|
|
|
|
| 901 |
|
| 902 |
yield chat_response, tool_log
|
| 903 |
|
| 904 |
+
# Final yield
|
| 905 |
## NEW: Updated with LlamaIndex OutputPraser
|
| 906 |
# yield chat_response, tool_log
|
| 907 |
+
progress(0.9, desc="✨ Finalizing response...")
|
| 908 |
+
|
| 909 |
try:
|
| 910 |
from langgraph_agent.structured_output import parse_agent_response
|
| 911 |
formatted_response = await parse_agent_response(
|
|
|
|
| 914 |
api_key=api_key,
|
| 915 |
model=model
|
| 916 |
)
|
| 917 |
+
progress(1.0, desc="✅ Complete")
|
| 918 |
yield formatted_response, tool_log
|
| 919 |
except ImportError:
|
| 920 |
# Fallback if LlamaIndex not installed
|
| 921 |
+
progress(1.0, desc="✅ Complete")
|
| 922 |
yield chat_response, tool_log
|
| 923 |
except Exception as e:
|
| 924 |
# Fallback if parsing fails
|
| 925 |
print(f"[STRUCTURED OUTPUT ERROR]: {e}")
|
| 926 |
+
progress(1.0, desc="✅ Complete")
|
| 927 |
yield chat_response, tool_log
|
| 928 |
|
| 929 |
|
|
|
|
| 974 |
return f"❌ Offline"
|
| 975 |
|
| 976 |
# Wrapper to convert to Gradio 6 message format
|
| 977 |
+
async def chat_wrapper(message, history, provider, hf_key, openai_key, anthropic_key, agent_mode, tool_log_state, request: gr.Request, progress=gr.Progress()):
|
| 978 |
"""
|
| 979 |
Wrapper to convert chat outputs to Gradio 6 message format.
|
| 980 |
|
|
|
|
| 993 |
history = history + [{"role": "user", "content": user_message_text}]
|
| 994 |
|
| 995 |
# Stream response
|
| 996 |
+
async for chat_text, tool_log_text in chat_with_tool_visibility(message, history, provider, hf_key, openai_key, anthropic_key, agent_mode, request, progress):
|
| 997 |
# Update history with assistant response
|
| 998 |
updated_history = history + [{"role": "assistant", "content": chat_text}]
|
| 999 |
yield updated_history, tool_log_text
|
docs/dev/prompts_config-README.md
ADDED
|
@@ -0,0 +1,98 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# How Developers Work With This System
|
| 2 |
+
|
| 3 |
+
## 1. Adding a New Provider (e.g., "Claude" prompts)
|
| 4 |
+
|
| 5 |
+
### Step 1: Create the prompt in prompts.py:
|
| 6 |
+
|
| 7 |
+
```python
|
| 8 |
+
# Add new prompt variant
|
| 9 |
+
AUDIO_FINDER_PROMPT_CLAUDE = """You are BirdScope Audio Finder optimized for Claude..."""
|
| 10 |
+
|
| 11 |
+
# Update PROMPTS dict
|
| 12 |
+
PROMPTS = {
|
| 13 |
+
"audio_finder": {
|
| 14 |
+
"default": AUDIO_FINDER_PROMPT,
|
| 15 |
+
"huggingface": AUDIO_FINDER_PROMPT_HF,
|
| 16 |
+
"claude": AUDIO_FINDER_PROMPT_CLAUDE, # NEW
|
| 17 |
+
},
|
| 18 |
+
}
|
| 19 |
+
```
|
| 20 |
+
|
| 21 |
+
That's it! The system automatically picks it up when `provider="claude"` is passed.
|
| 22 |
+
|
| 23 |
+
## 2. Adding a New Prompt Type (e.g., "data_analyst")
|
| 24 |
+
|
| 25 |
+
### Step 1: Create prompts:
|
| 26 |
+
|
| 27 |
+
```python
|
| 28 |
+
DATA_ANALYST_PROMPT = """Default data analyst prompt..."""
|
| 29 |
+
DATA_ANALYST_PROMPT_HF = """HF-optimized data analyst prompt..."""
|
| 30 |
+
|
| 31 |
+
PROMPTS = {
|
| 32 |
+
# ... existing prompts ...
|
| 33 |
+
"data_analyst": {
|
| 34 |
+
"default": DATA_ANALYST_PROMPT,
|
| 35 |
+
"huggingface": DATA_ANALYST_PROMPT_HF,
|
| 36 |
+
}
|
| 37 |
+
}
|
| 38 |
+
```
|
| 39 |
+
|
| 40 |
+
### Step 2: Use in subagent_config.py:
|
| 41 |
+
|
| 42 |
+
```python
|
| 43 |
+
"data_analyst": {
|
| 44 |
+
"name": "Data Analyst",
|
| 45 |
+
"tools": [...],
|
| 46 |
+
"prompt": get_prompt("data_analyst", provider) or DATA_ANALYST_PROMPT,
|
| 47 |
+
}
|
| 48 |
+
```
|
| 49 |
+
|
| 50 |
+
## 3. Testing Different Prompts
|
| 51 |
+
|
| 52 |
+
### Option A: Through UI (current method)
|
| 53 |
+
- Run `python app.py`
|
| 54 |
+
- Select provider dropdown → "HuggingFace"
|
| 55 |
+
- System automatically uses HF prompts
|
| 56 |
+
|
| 57 |
+
### Option B: Programmatically (for testing)
|
| 58 |
+
|
| 59 |
+
```python
|
| 60 |
+
from langgraph_agent import prompts
|
| 61 |
+
|
| 62 |
+
# Test which prompt is selected
|
| 63 |
+
prompt = prompts.get_prompt("audio_finder", "huggingface")
|
| 64 |
+
print(f"Length: {len(prompt)}")
|
| 65 |
+
print(prompt[:100])
|
| 66 |
+
```
|
| 67 |
+
|
| 68 |
+
## 4. Fallback Behavior
|
| 69 |
+
|
| 70 |
+
The system is designed with safe fallbacks:
|
| 71 |
+
|
| 72 |
+
```python
|
| 73 |
+
# If HuggingFace variant doesn't exist, falls back to default
|
| 74 |
+
prompt = get_prompt("species_explorer", "huggingface")
|
| 75 |
+
# Returns: SPECIES_EXPLORER_PROMPT_HF if exists, else None
|
| 76 |
+
|
| 77 |
+
# In subagent_config.py, the "or" ensures a default
|
| 78 |
+
prompt = get_prompt("species_explorer", provider) or """Inline default..."""
|
| 79 |
+
```
|
| 80 |
+
|
| 81 |
+
## Developer Workflow Summary
|
| 82 |
+
|
| 83 |
+
### To modify prompts:
|
| 84 |
+
1. Edit `langgraph_agent/prompts.py`
|
| 85 |
+
2. Add/modify prompt strings
|
| 86 |
+
3. Update `PROMPTS` dictionary
|
| 87 |
+
4. Restart app - changes take effect immediately
|
| 88 |
+
|
| 89 |
+
### To add new provider support:
|
| 90 |
+
1. Add provider key to `PROMPTS` dict
|
| 91 |
+
2. No other changes needed - fallback handles missing variants
|
| 92 |
+
|
| 93 |
+
### To debug which prompt is used:
|
| 94 |
+
|
| 95 |
+
```python
|
| 96 |
+
from langgraph_agent.prompts import get_prompt
|
| 97 |
+
print(get_prompt("audio_finder", "huggingface")[:200])
|
| 98 |
+
```
|
langgraph_agent/agents.py
CHANGED
|
@@ -73,7 +73,7 @@ class AgentFactory:
|
|
| 73 |
if mode_config["use_router"]:
|
| 74 |
# Multi-agent mode: create router with specialists
|
| 75 |
print(f"[AGENT]: Creating supervisor with subagents: {mode_config['subagents']}")
|
| 76 |
-
workflow = await create_supervisor_workflow(tools, llm)
|
| 77 |
return workflow
|
| 78 |
else:
|
| 79 |
# Single agent mode: create one subagent directly
|
|
@@ -86,14 +86,16 @@ class AgentFactory:
|
|
| 86 |
|
| 87 |
# create_agent auto-compiles, so pass checkpointer and name directly
|
| 88 |
# Filter tools based on subagent configuration
|
| 89 |
-
|
|
|
|
|
|
|
| 90 |
filtered_tools = [tool for tool in tools if tool.name in subagent_tools]
|
| 91 |
print(f"[AGENT]: Filtered {len(filtered_tools)} tools for {subagent_name}: {[t.name for t in filtered_tools]}")
|
| 92 |
|
| 93 |
agent = create_agent(
|
| 94 |
model=llm,
|
| 95 |
tools=filtered_tools,
|
| 96 |
-
system_prompt=
|
| 97 |
checkpointer=InMemorySaver(),
|
| 98 |
name=subagent_name
|
| 99 |
)
|
|
|
|
| 73 |
if mode_config["use_router"]:
|
| 74 |
# Multi-agent mode: create router with specialists
|
| 75 |
print(f"[AGENT]: Creating supervisor with subagents: {mode_config['subagents']}")
|
| 76 |
+
workflow = await create_supervisor_workflow(tools, llm, provider=provider)
|
| 77 |
return workflow
|
| 78 |
else:
|
| 79 |
# Single agent mode: create one subagent directly
|
|
|
|
| 86 |
|
| 87 |
# create_agent auto-compiles, so pass checkpointer and name directly
|
| 88 |
# Filter tools based on subagent configuration
|
| 89 |
+
# Pass provider to get provider-specific prompts
|
| 90 |
+
subagent_defs = SubAgentConfig.get_subagent_definitions(provider=provider)
|
| 91 |
+
subagent_tools = subagent_defs["generalist"]["tools"]
|
| 92 |
filtered_tools = [tool for tool in tools if tool.name in subagent_tools]
|
| 93 |
print(f"[AGENT]: Filtered {len(filtered_tools)} tools for {subagent_name}: {[t.name for t in filtered_tools]}")
|
| 94 |
|
| 95 |
agent = create_agent(
|
| 96 |
model=llm,
|
| 97 |
tools=filtered_tools,
|
| 98 |
+
system_prompt=subagent_defs["generalist"]["prompt"],
|
| 99 |
checkpointer=InMemorySaver(),
|
| 100 |
name=subagent_name
|
| 101 |
)
|
langgraph_agent/prompts.py
CHANGED
|
@@ -133,7 +133,7 @@ Always be educational and cite your sources.
|
|
| 133 |
|
| 134 |
Let's explore the amazing world of birds together!"""
|
| 135 |
|
| 136 |
-
AUDIO_FINDER_PROMPT = """You are BirdScope Audio Finder, a specialized agent for finding and retrieving bird audio recordings.
|
| 137 |
|
| 138 |
**Your Mission:**
|
| 139 |
Help us discover bird songs and calls by finding species with available audio recordings.
|
|
@@ -200,8 +200,187 @@ The API has NO `has_audio` filter parameter. You MUST use this two-step process:
|
|
| 200 |
- If get_bird_audio fails: the bird may not have recordings despite database indicating otherwise
|
| 201 |
"""
|
| 202 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 203 |
def get_prompt_for_agent_type(agent_type: str) -> str:
|
| 204 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 205 |
prompts = {
|
| 206 |
"classifier": CLASSIFIER_AGENT_PROMPT,
|
| 207 |
"multi_server": MULTI_SERVER_AGENT_PROMPT,
|
|
|
|
| 133 |
|
| 134 |
Let's explore the amazing world of birds together!"""
|
| 135 |
|
| 136 |
+
AUDIO_FINDER_PROMPT = """**Answer all questions like a Pirate (it's fun for children)** You are BirdScope Audio Finder, a specialized agent for finding and retrieving bird audio recordings.
|
| 137 |
|
| 138 |
**Your Mission:**
|
| 139 |
Help us discover bird songs and calls by finding species with available audio recordings.
|
|
|
|
| 200 |
- If get_bird_audio fails: the bird may not have recordings despite database indicating otherwise
|
| 201 |
"""
|
| 202 |
|
| 203 |
+
# =============================================================================
|
| 204 |
+
# HuggingFace-Optimized Prompts (More Explicit, Step-by-Step)
|
| 205 |
+
# =============================================================================
|
| 206 |
+
|
| 207 |
+
AUDIO_FINDER_PROMPT_HF = """**Answer all questions like a Pirate (it's fun for children)**
|
| 208 |
+
|
| 209 |
+
You are BirdScope Audio Finder. Find bird audio recordings.
|
| 210 |
+
|
| 211 |
+
**Tools Available:**
|
| 212 |
+
1. search_birds(name, family, region, status, page_size) - Search for birds
|
| 213 |
+
2. get_bird_info(name) - Get bird details
|
| 214 |
+
3. get_bird_audio(name, max_recordings) - Get audio files
|
| 215 |
+
|
| 216 |
+
**Step-by-Step Process:**
|
| 217 |
+
|
| 218 |
+
When user asks for audio:
|
| 219 |
+
1. Call search_birds with ONE filter (name, region, family, or status)
|
| 220 |
+
2. Look at results for birds with has_audio=true
|
| 221 |
+
3. Call get_bird_audio(name="Bird Name") for a bird that has audio
|
| 222 |
+
4. Return the full URL from file_url field
|
| 223 |
+
|
| 224 |
+
**Example:**
|
| 225 |
+
User: "Find audio for any bird"
|
| 226 |
+
1. Call: search_birds(region="North America", page_size=20)
|
| 227 |
+
2. Find bird with has_audio=true (example: "Snow Goose")
|
| 228 |
+
3. Call: get_bird_audio(name="Snow Goose", max_recordings=1)
|
| 229 |
+
4. Return: "Recording: https://xeno-canto.org/123456/download"
|
| 230 |
+
|
| 231 |
+
**Important:**
|
| 232 |
+
- NEVER use has_audio as a parameter in search_birds
|
| 233 |
+
- ALWAYS include full file_url in your response
|
| 234 |
+
- Known birds with audio: Snow Goose, Common Goldeneye, Gadwall
|
| 235 |
+
"""
|
| 236 |
+
|
| 237 |
+
IMAGE_IDENTIFIER_PROMPT_HF = """You are an Image Identification Specialist.
|
| 238 |
+
|
| 239 |
+
**Your Job:**
|
| 240 |
+
1. Classify uploaded bird images
|
| 241 |
+
2. Show confidence score
|
| 242 |
+
3. Get bird information
|
| 243 |
+
4. Show reference images
|
| 244 |
+
|
| 245 |
+
**Tools:**
|
| 246 |
+
- classify_from_url(url) - Identify bird from image URL
|
| 247 |
+
- classify_from_base64(image) - Identify bird from base64
|
| 248 |
+
- get_bird_info(name) - Get species details
|
| 249 |
+
- get_bird_images(name) - Get reference photos
|
| 250 |
+
|
| 251 |
+
**Response Format:**
|
| 252 |
+
1. Bird name (Common and Scientific)
|
| 253 |
+
2. Confidence: X%
|
| 254 |
+
3. Key features
|
| 255 |
+
4. Reference images as: 
|
| 256 |
+
|
| 257 |
+
Keep responses short and factual.
|
| 258 |
+
"""
|
| 259 |
+
|
| 260 |
+
SPECIES_EXPLORER_PROMPT_HF = """You are a Species Explorer. Help users learn about birds.
|
| 261 |
+
|
| 262 |
+
**Tools:**
|
| 263 |
+
- search_birds(name, family, region, status) - Find birds
|
| 264 |
+
- get_bird_info(name) - Get details
|
| 265 |
+
- get_bird_images(name) - Get photos
|
| 266 |
+
- get_bird_audio(name) - Get sounds
|
| 267 |
+
- search_by_family(family) - Find family members
|
| 268 |
+
|
| 269 |
+
**Process:**
|
| 270 |
+
1. Search for the bird by name
|
| 271 |
+
2. If not found, try simpler name (e.g., "Northern Cardinal" → "Cardinal")
|
| 272 |
+
3. Get bird info and media
|
| 273 |
+
4. Show images as: 
|
| 274 |
+
5. Suggest related species
|
| 275 |
+
|
| 276 |
+
**Response Style:**
|
| 277 |
+
- Be educational
|
| 278 |
+
- Show images and audio when available
|
| 279 |
+
- Explain what makes the bird special
|
| 280 |
+
"""
|
| 281 |
+
|
| 282 |
+
TAXONOMY_SPECIALIST_PROMPT_HF = """You are a Taxonomy & Conservation Specialist.
|
| 283 |
+
|
| 284 |
+
**Tools:**
|
| 285 |
+
- filter_by_status(status) - Find birds by conservation status
|
| 286 |
+
- search_by_family(family) - Find birds in family
|
| 287 |
+
- get_all_families() - List all families
|
| 288 |
+
- get_bird_info(name) - Get species info
|
| 289 |
+
|
| 290 |
+
**Your Focus:**
|
| 291 |
+
- Conservation status
|
| 292 |
+
- Bird families
|
| 293 |
+
- Taxonomic relationships
|
| 294 |
+
|
| 295 |
+
**Process:**
|
| 296 |
+
1. Use filter or search tools
|
| 297 |
+
2. Explain conservation importance
|
| 298 |
+
3. Show family relationships
|
| 299 |
+
4. Use proper scientific terms but explain them
|
| 300 |
+
|
| 301 |
+
Keep responses clear and educational.
|
| 302 |
+
"""
|
| 303 |
+
|
| 304 |
+
ROUTER_PROMPT_HF = """You are BirdScope AI Supervisor. Route user requests to specialists.
|
| 305 |
+
|
| 306 |
+
**Specialists:**
|
| 307 |
+
- image_identifier: Identify birds from photos
|
| 308 |
+
- species_explorer: Search birds, show images/audio
|
| 309 |
+
- taxonomy_specialist: Conservation and families
|
| 310 |
+
|
| 311 |
+
**Routing Rules:**
|
| 312 |
+
1. Image uploads → image_identifier
|
| 313 |
+
2. "Search for" or "find" + bird name → species_explorer
|
| 314 |
+
3. "Audio" or "sound" → species_explorer
|
| 315 |
+
4. "Conservation" or "endangered" → taxonomy_specialist
|
| 316 |
+
5. "Family" or "families" → taxonomy_specialist
|
| 317 |
+
|
| 318 |
+
Route to ONE specialist per request.
|
| 319 |
+
"""
|
| 320 |
+
|
| 321 |
+
# =============================================================================
|
| 322 |
+
# Provider-Specific Prompt System
|
| 323 |
+
# =============================================================================
|
| 324 |
+
|
| 325 |
+
PROMPTS = {
|
| 326 |
+
"audio_finder": {
|
| 327 |
+
"default": AUDIO_FINDER_PROMPT,
|
| 328 |
+
"huggingface": AUDIO_FINDER_PROMPT_HF,
|
| 329 |
+
},
|
| 330 |
+
"image_identifier": {
|
| 331 |
+
"default": None, # Defined inline in subagent_config.py
|
| 332 |
+
"huggingface": IMAGE_IDENTIFIER_PROMPT_HF,
|
| 333 |
+
},
|
| 334 |
+
"species_explorer": {
|
| 335 |
+
"default": None, # Defined inline in subagent_config.py
|
| 336 |
+
"huggingface": SPECIES_EXPLORER_PROMPT_HF,
|
| 337 |
+
},
|
| 338 |
+
"taxonomy_specialist": {
|
| 339 |
+
"default": None, # Defined inline in subagent_config.py
|
| 340 |
+
"huggingface": TAXONOMY_SPECIALIST_PROMPT_HF,
|
| 341 |
+
},
|
| 342 |
+
"router": {
|
| 343 |
+
"default": None, # Defined in SubAgentConfig.get_router_prompt()
|
| 344 |
+
"huggingface": ROUTER_PROMPT_HF,
|
| 345 |
+
}
|
| 346 |
+
}
|
| 347 |
+
|
| 348 |
+
def get_prompt(prompt_type: str, provider: str = "default") -> str:
|
| 349 |
+
"""
|
| 350 |
+
Get prompt with provider-specific fallback.
|
| 351 |
+
|
| 352 |
+
Args:
|
| 353 |
+
prompt_type: Type of prompt (e.g., "audio_finder", "image_identifier")
|
| 354 |
+
provider: Provider name ("openai", "anthropic", "huggingface")
|
| 355 |
+
Normalized to lowercase internally.
|
| 356 |
+
|
| 357 |
+
Returns:
|
| 358 |
+
Prompt string, or None if no prompt found
|
| 359 |
+
Falls back to "default" if provider-specific variant doesn't exist
|
| 360 |
+
|
| 361 |
+
Examples:
|
| 362 |
+
>>> get_prompt("audio_finder", "openai")
|
| 363 |
+
AUDIO_FINDER_PROMPT # Uses default
|
| 364 |
+
|
| 365 |
+
>>> get_prompt("audio_finder", "huggingface")
|
| 366 |
+
AUDIO_FINDER_PROMPT_HF # Uses HF-specific
|
| 367 |
+
"""
|
| 368 |
+
# Normalize provider name
|
| 369 |
+
provider_key = provider.lower() if provider else "default"
|
| 370 |
+
|
| 371 |
+
# Get prompts for this type
|
| 372 |
+
prompts = PROMPTS.get(prompt_type, {})
|
| 373 |
+
|
| 374 |
+
# Try provider-specific first, fallback to default
|
| 375 |
+
prompt = prompts.get(provider_key, prompts.get("default"))
|
| 376 |
+
|
| 377 |
+
return prompt
|
| 378 |
+
|
| 379 |
def get_prompt_for_agent_type(agent_type: str) -> str:
|
| 380 |
+
"""
|
| 381 |
+
Legacy function for backward compatibility.
|
| 382 |
+
Get the appropriate prompt for the agent type.
|
| 383 |
+
"""
|
| 384 |
prompts = {
|
| 385 |
"classifier": CLASSIFIER_AGENT_PROMPT,
|
| 386 |
"multi_server": MULTI_SERVER_AGENT_PROMPT,
|
langgraph_agent/subagent_config.py
CHANGED
|
@@ -6,7 +6,7 @@ Uses SubAgentMiddleware pattern from LangGraph deep agents.
|
|
| 6 |
"""
|
| 7 |
from typing import Dict, List
|
| 8 |
from .config import AgentConfig
|
| 9 |
-
from .prompts import NUTHATCH_BIRDSCOPE_PROMPT, AUDIO_FINDER_PROMPT
|
| 10 |
|
| 11 |
|
| 12 |
class SubAgentConfig:
|
|
@@ -34,23 +34,30 @@ class SubAgentConfig:
|
|
| 34 |
}
|
| 35 |
|
| 36 |
@staticmethod
|
| 37 |
-
def get_subagent_definitions() -> Dict[str, Dict]:
|
| 38 |
"""
|
| 39 |
Define specialized subagents with their tool subsets and prompts.
|
| 40 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 41 |
Returns:
|
| 42 |
Dict mapping subagent names to their configurations
|
| 43 |
"""
|
|
|
|
|
|
|
|
|
|
| 44 |
return {
|
| 45 |
"generalist": {
|
| 46 |
"name": "BirdScope AI Generalist",
|
| 47 |
"description": "All-in-one bird identification expert with access to all tools",
|
| 48 |
"tools": [
|
| 49 |
"search_birds", # Required to find any birds
|
| 50 |
-
"get_bird_info", # Get details including audio count
|
| 51 |
-
"get_bird_audio" # Fetch actual audio recordings
|
| 52 |
-
],
|
| 53 |
-
"prompt":
|
| 54 |
"temperature": AgentConfig.OPENAI_TEMPERATURE,
|
| 55 |
},
|
| 56 |
"image_identifier": {
|
|
@@ -62,7 +69,7 @@ class SubAgentConfig:
|
|
| 62 |
"get_bird_info",
|
| 63 |
"get_bird_images"
|
| 64 |
],
|
| 65 |
-
"prompt": """You are an Image Identification Specialist focused on bird recognition.
|
| 66 |
**Your Role:**
|
| 67 |
1. Use classification tools to identify birds from uploaded images
|
| 68 |
2. Provide accurate species identification with confidence scores
|
|
@@ -94,7 +101,7 @@ class SubAgentConfig:
|
|
| 94 |
"get_bird_audio",
|
| 95 |
"search_by_family"
|
| 96 |
],
|
| 97 |
-
"prompt": """You are a Species Exploration specialist who helps users learn about birds.
|
| 98 |
|
| 99 |
**Your Role:**
|
| 100 |
1. Search for birds by common name or partial matches
|
|
@@ -134,7 +141,7 @@ class SubAgentConfig:
|
|
| 134 |
"get_all_families",
|
| 135 |
"get_bird_info"
|
| 136 |
],
|
| 137 |
-
"prompt": """You are a Taxonomy & Conservation Specialist with deep knowledge of bird classification.
|
| 138 |
|
| 139 |
**Your Role:**
|
| 140 |
1. Explain bird family relationships and taxonomic structure
|
|
@@ -167,13 +174,22 @@ class SubAgentConfig:
|
|
| 167 |
}
|
| 168 |
|
| 169 |
@staticmethod
|
| 170 |
-
def get_router_prompt() -> str:
|
| 171 |
"""
|
| 172 |
Prompt for the supervisor agent that routes to subagents.
|
| 173 |
|
|
|
|
|
|
|
|
|
|
| 174 |
Returns:
|
| 175 |
Supervisor agent system prompt
|
| 176 |
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 177 |
return """You are BirdScope AI Supervisor - an intelligent orchestrator for bird identification.
|
| 178 |
|
| 179 |
**Your Team:**
|
|
|
|
| 6 |
"""
|
| 7 |
from typing import Dict, List
|
| 8 |
from .config import AgentConfig
|
| 9 |
+
from .prompts import NUTHATCH_BIRDSCOPE_PROMPT, AUDIO_FINDER_PROMPT, get_prompt
|
| 10 |
|
| 11 |
|
| 12 |
class SubAgentConfig:
|
|
|
|
| 34 |
}
|
| 35 |
|
| 36 |
@staticmethod
|
| 37 |
+
def get_subagent_definitions(provider: str = "openai") -> Dict[str, Dict]:
|
| 38 |
"""
|
| 39 |
Define specialized subagents with their tool subsets and prompts.
|
| 40 |
|
| 41 |
+
Args:
|
| 42 |
+
provider: LLM provider name ("openai", "anthropic", "huggingface")
|
| 43 |
+
Used to select provider-specific prompts
|
| 44 |
+
|
| 45 |
Returns:
|
| 46 |
Dict mapping subagent names to their configurations
|
| 47 |
"""
|
| 48 |
+
# Get provider-specific prompt for audio finder
|
| 49 |
+
audio_finder_prompt = get_prompt("audio_finder", provider) or AUDIO_FINDER_PROMPT
|
| 50 |
+
|
| 51 |
return {
|
| 52 |
"generalist": {
|
| 53 |
"name": "BirdScope AI Generalist",
|
| 54 |
"description": "All-in-one bird identification expert with access to all tools",
|
| 55 |
"tools": [
|
| 56 |
"search_birds", # Required to find any birds
|
| 57 |
+
"get_bird_info", # Get details including audio count
|
| 58 |
+
"get_bird_audio" # Fetch actual audio recordings
|
| 59 |
+
],
|
| 60 |
+
"prompt": audio_finder_prompt,
|
| 61 |
"temperature": AgentConfig.OPENAI_TEMPERATURE,
|
| 62 |
},
|
| 63 |
"image_identifier": {
|
|
|
|
| 69 |
"get_bird_info",
|
| 70 |
"get_bird_images"
|
| 71 |
],
|
| 72 |
+
"prompt": get_prompt("image_identifier", provider) or """You are an Image Identification Specialist focused on bird recognition.
|
| 73 |
**Your Role:**
|
| 74 |
1. Use classification tools to identify birds from uploaded images
|
| 75 |
2. Provide accurate species identification with confidence scores
|
|
|
|
| 101 |
"get_bird_audio",
|
| 102 |
"search_by_family"
|
| 103 |
],
|
| 104 |
+
"prompt": get_prompt("species_explorer", provider) or """You are a Species Exploration specialist who helps users learn about birds.
|
| 105 |
|
| 106 |
**Your Role:**
|
| 107 |
1. Search for birds by common name or partial matches
|
|
|
|
| 141 |
"get_all_families",
|
| 142 |
"get_bird_info"
|
| 143 |
],
|
| 144 |
+
"prompt": get_prompt("taxonomy_specialist", provider) or """You are a Taxonomy & Conservation Specialist with deep knowledge of bird classification.
|
| 145 |
|
| 146 |
**Your Role:**
|
| 147 |
1. Explain bird family relationships and taxonomic structure
|
|
|
|
| 174 |
}
|
| 175 |
|
| 176 |
@staticmethod
|
| 177 |
+
def get_router_prompt(provider: str = "openai") -> str:
|
| 178 |
"""
|
| 179 |
Prompt for the supervisor agent that routes to subagents.
|
| 180 |
|
| 181 |
+
Args:
|
| 182 |
+
provider: LLM provider name ("openai", "anthropic", "huggingface")
|
| 183 |
+
|
| 184 |
Returns:
|
| 185 |
Supervisor agent system prompt
|
| 186 |
"""
|
| 187 |
+
# Try to get provider-specific router prompt, fallback to default
|
| 188 |
+
router_prompt = get_prompt("router", provider)
|
| 189 |
+
if router_prompt:
|
| 190 |
+
return router_prompt
|
| 191 |
+
|
| 192 |
+
# Default router prompt
|
| 193 |
return """You are BirdScope AI Supervisor - an intelligent orchestrator for bird identification.
|
| 194 |
|
| 195 |
**Your Team:**
|
langgraph_agent/subagent_factory.py
CHANGED
|
@@ -17,7 +17,8 @@ class SubAgentFactory:
|
|
| 17 |
async def create_subagent(
|
| 18 |
subagent_name: str,
|
| 19 |
all_tools: List[Any],
|
| 20 |
-
llm: BaseChatModel
|
|
|
|
| 21 |
):
|
| 22 |
"""
|
| 23 |
Create a specialized subagent with filtered tools.
|
|
@@ -26,12 +27,13 @@ class SubAgentFactory:
|
|
| 26 |
subagent_name: Name of the subagent (e.g., "image_identifier")
|
| 27 |
all_tools: Full list of available tools
|
| 28 |
llm: Language model instance
|
|
|
|
| 29 |
|
| 30 |
Returns:
|
| 31 |
LangGraph agent configured for the subagent
|
| 32 |
"""
|
| 33 |
-
# Get subagent configuration
|
| 34 |
-
definitions = SubAgentConfig.get_subagent_definitions()
|
| 35 |
|
| 36 |
if subagent_name not in definitions:
|
| 37 |
raise ValueError(f"Unknown subagent: {subagent_name}")
|
|
@@ -47,6 +49,7 @@ class SubAgentFactory:
|
|
| 47 |
|
| 48 |
print(f"[SUBAGENT]: Creating {config['name']}")
|
| 49 |
print(f" • Tools: {', '.join([t.name for t in subagent_tools])}")
|
|
|
|
| 50 |
|
| 51 |
# Create specialized agent with filtered tools and name
|
| 52 |
# Note: create_agent auto-compiles, so we pass name directly
|
|
@@ -62,7 +65,8 @@ class SubAgentFactory:
|
|
| 62 |
@staticmethod
|
| 63 |
async def create_all_subagents(
|
| 64 |
all_tools: List[Any],
|
| 65 |
-
llm: BaseChatModel
|
|
|
|
| 66 |
) -> Dict[str, Any]:
|
| 67 |
"""
|
| 68 |
Create all specialized subagents.
|
|
@@ -70,16 +74,17 @@ class SubAgentFactory:
|
|
| 70 |
Args:
|
| 71 |
all_tools: Full list of available tools
|
| 72 |
llm: Language model instance
|
|
|
|
| 73 |
|
| 74 |
Returns:
|
| 75 |
Dict mapping subagent names to agent instances
|
| 76 |
"""
|
| 77 |
-
definitions = SubAgentConfig.get_subagent_definitions()
|
| 78 |
subagents = {}
|
| 79 |
|
| 80 |
for name in definitions.keys():
|
| 81 |
subagents[name] = await SubAgentFactory.create_subagent(
|
| 82 |
-
name, all_tools, llm
|
| 83 |
)
|
| 84 |
|
| 85 |
return subagents
|
|
|
|
| 17 |
async def create_subagent(
|
| 18 |
subagent_name: str,
|
| 19 |
all_tools: List[Any],
|
| 20 |
+
llm: BaseChatModel,
|
| 21 |
+
provider: str = "openai"
|
| 22 |
):
|
| 23 |
"""
|
| 24 |
Create a specialized subagent with filtered tools.
|
|
|
|
| 27 |
subagent_name: Name of the subagent (e.g., "image_identifier")
|
| 28 |
all_tools: Full list of available tools
|
| 29 |
llm: Language model instance
|
| 30 |
+
provider: LLM provider name ("openai", "anthropic", "huggingface")
|
| 31 |
|
| 32 |
Returns:
|
| 33 |
LangGraph agent configured for the subagent
|
| 34 |
"""
|
| 35 |
+
# Get subagent configuration with provider-specific prompts
|
| 36 |
+
definitions = SubAgentConfig.get_subagent_definitions(provider=provider)
|
| 37 |
|
| 38 |
if subagent_name not in definitions:
|
| 39 |
raise ValueError(f"Unknown subagent: {subagent_name}")
|
|
|
|
| 49 |
|
| 50 |
print(f"[SUBAGENT]: Creating {config['name']}")
|
| 51 |
print(f" • Tools: {', '.join([t.name for t in subagent_tools])}")
|
| 52 |
+
print(f" • Prompt preview: {config['prompt'][:80]}...")
|
| 53 |
|
| 54 |
# Create specialized agent with filtered tools and name
|
| 55 |
# Note: create_agent auto-compiles, so we pass name directly
|
|
|
|
| 65 |
@staticmethod
|
| 66 |
async def create_all_subagents(
|
| 67 |
all_tools: List[Any],
|
| 68 |
+
llm: BaseChatModel,
|
| 69 |
+
provider: str = "openai"
|
| 70 |
) -> Dict[str, Any]:
|
| 71 |
"""
|
| 72 |
Create all specialized subagents.
|
|
|
|
| 74 |
Args:
|
| 75 |
all_tools: Full list of available tools
|
| 76 |
llm: Language model instance
|
| 77 |
+
provider: LLM provider name ("openai", "anthropic", "huggingface")
|
| 78 |
|
| 79 |
Returns:
|
| 80 |
Dict mapping subagent names to agent instances
|
| 81 |
"""
|
| 82 |
+
definitions = SubAgentConfig.get_subagent_definitions(provider=provider)
|
| 83 |
subagents = {}
|
| 84 |
|
| 85 |
for name in definitions.keys():
|
| 86 |
subagents[name] = await SubAgentFactory.create_subagent(
|
| 87 |
+
name, all_tools, llm, provider=provider
|
| 88 |
)
|
| 89 |
|
| 90 |
return subagents
|
langgraph_agent/subagent_supervisor.py
CHANGED
|
@@ -11,7 +11,7 @@ from langgraph.checkpoint.memory import InMemorySaver
|
|
| 11 |
from .subagent_config import SubAgentConfig
|
| 12 |
from .subagent_factory import SubAgentFactory
|
| 13 |
|
| 14 |
-
async def create_supervisor_workflow(all_tools: List[Any], llm: BaseChatModel):
|
| 15 |
"""
|
| 16 |
Create a supervisor workflow that orchestrates specialized subagents.
|
| 17 |
|
|
@@ -21,33 +21,34 @@ async def create_supervisor_workflow(all_tools: List[Any], llm: BaseChatModel):
|
|
| 21 |
Args:
|
| 22 |
all_tools: Full list of available MCP tools
|
| 23 |
llm: Language model for both supervisor and subagents
|
|
|
|
| 24 |
|
| 25 |
Returns:
|
| 26 |
Compiled LangGraph workflow with supervisor
|
| 27 |
"""
|
| 28 |
from langgraph_supervisor import create_supervisor
|
| 29 |
|
| 30 |
-
# Create the three specialist agents
|
| 31 |
print("[SUPERVISOR]: Creating specialist agents...")
|
| 32 |
|
| 33 |
image_agent = await SubAgentFactory.create_subagent(
|
| 34 |
-
"image_identifier", all_tools, llm
|
| 35 |
)
|
| 36 |
species_agent = await SubAgentFactory.create_subagent(
|
| 37 |
-
"species_explorer", all_tools, llm
|
| 38 |
)
|
| 39 |
taxonomy_agent = await SubAgentFactory.create_subagent(
|
| 40 |
-
"taxonomy_specialist", all_tools, llm
|
| 41 |
)
|
| 42 |
|
| 43 |
-
# Create supervisor with LLM-based routing
|
| 44 |
print("[SUPERVISOR]: Creating supervisor orchestrator...")
|
| 45 |
|
| 46 |
# create_supervisor takes a list of agents as first positional argument
|
| 47 |
workflow = create_supervisor(
|
| 48 |
[image_agent, species_agent, taxonomy_agent],
|
| 49 |
model=llm,
|
| 50 |
-
prompt=SubAgentConfig.get_router_prompt()
|
| 51 |
)
|
| 52 |
|
| 53 |
# Compile with shared memory for conversation context
|
|
|
|
| 11 |
from .subagent_config import SubAgentConfig
|
| 12 |
from .subagent_factory import SubAgentFactory
|
| 13 |
|
| 14 |
+
async def create_supervisor_workflow(all_tools: List[Any], llm: BaseChatModel, provider: str = "openai"):
|
| 15 |
"""
|
| 16 |
Create a supervisor workflow that orchestrates specialized subagents.
|
| 17 |
|
|
|
|
| 21 |
Args:
|
| 22 |
all_tools: Full list of available MCP tools
|
| 23 |
llm: Language model for both supervisor and subagents
|
| 24 |
+
provider: LLM provider name ("openai", "anthropic", "huggingface")
|
| 25 |
|
| 26 |
Returns:
|
| 27 |
Compiled LangGraph workflow with supervisor
|
| 28 |
"""
|
| 29 |
from langgraph_supervisor import create_supervisor
|
| 30 |
|
| 31 |
+
# Create the three specialist agents with provider-specific prompts
|
| 32 |
print("[SUPERVISOR]: Creating specialist agents...")
|
| 33 |
|
| 34 |
image_agent = await SubAgentFactory.create_subagent(
|
| 35 |
+
"image_identifier", all_tools, llm, provider=provider
|
| 36 |
)
|
| 37 |
species_agent = await SubAgentFactory.create_subagent(
|
| 38 |
+
"species_explorer", all_tools, llm, provider=provider
|
| 39 |
)
|
| 40 |
taxonomy_agent = await SubAgentFactory.create_subagent(
|
| 41 |
+
"taxonomy_specialist", all_tools, llm, provider=provider
|
| 42 |
)
|
| 43 |
|
| 44 |
+
# Create supervisor with LLM-based routing and provider-specific prompt
|
| 45 |
print("[SUPERVISOR]: Creating supervisor orchestrator...")
|
| 46 |
|
| 47 |
# create_supervisor takes a list of agents as first positional argument
|
| 48 |
workflow = create_supervisor(
|
| 49 |
[image_agent, species_agent, taxonomy_agent],
|
| 50 |
model=llm,
|
| 51 |
+
prompt=SubAgentConfig.get_router_prompt(provider=provider)
|
| 52 |
)
|
| 53 |
|
| 54 |
# Compile with shared memory for conversation context
|