File size: 8,212 Bytes
ff0e97f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
"""
Bird Species Classifier MCP Server on Modal
Updated to support:
1. classify_from_base64() - for IDE/Cursor clients and Gradio
2. classify_from_url() - for fallback/public images
"""

import modal
from fastmcp import FastMCP
import base64
import json
import httpx
from io import BytesIO
from PIL import Image
import torch
import os

# ============================================================================
# MODAL APP CONFIGURATION
# ============================================================================

app = modal.App("bird-classifier-mcp")

image = modal.Image.debian_slim(python_version="3.12").pip_install(
    "transformers==4.46.0",
    "torch==2.5.1",
    "pillow==10.4.0",
    "fastmcp>=2.13.0",
    "pydantic>=2.10.0,<3.0.0",
    "fastapi==0.115.14",
    "httpx>=0.28.0",
)

API_KEY_SECRET = modal.Secret.from_name("bird-classifier-api-key")

# ============================================================================
# MCP SERVER DEFINITION
# ============================================================================

def make_mcp_server():
    """Create FastMCP server with bird classification tools."""
    from transformers import pipeline

    mcp = FastMCP("Bird Species Classifier")

    print("🔄 Loading bird classifier model...")
    classifier = pipeline(
        "image-classification",
        model="prithivMLmods/Bird-Species-Classifier-526",
        device=0
    )
    print("✅ Model loaded!")

    def preprocess_image(image: Image.Image, max_size: int = 800) -> Image.Image:
        """Resize and convert to RGB."""
        if image.mode != 'RGB':
            image = image.convert('RGB')

        if max(image.size) > max_size:
            ratio = max_size / max(image.size)
            new_size = (int(image.size[0] * ratio), int(image.size[1] * ratio))
            image = image.resize(new_size, Image.Resampling.LANCZOS)

        return image

    # ========================================================================
    # TOOL 1: classify_from_base64 (PRIMARY - for IDE/Gradio)
    # ========================================================================

    @mcp.tool()
    async def classify_from_base64(image_data: str) -> str:
        """
        Classify a bird species from base64-encoded image data.

        This is the primary tool for IDE clients and Gradio apps.
        Accepts raw base64 or data URL format.

        Args:
            image_data: Base64-encoded image string (PNG/JPG)
                       Can be raw base64 or "data:image/png;base64,..."

        Returns:
            JSON string with species name and confidence score
            Format: {"species": "Common Name", "confidence": 0.95}
        """
        try:
            # Handle data URL format
            if image_data.startswith("data:"):
                image_data = image_data.split(",")[1]

            # Decode base64
            print(f"[STATUS]: Decoding base64 image ({len(image_data)} chars)...")
            image_bytes = base64.b64decode(image_data)
            image = Image.open(BytesIO(image_bytes))
            image = preprocess_image(image)

            # Classify
            print(f"[STATUS]: Classifying image...")
            results = classifier(image, top_k=1)
            top_result = results[0]

            return json.dumps({
                "species": top_result['label'],
                "confidence": round(top_result['score'], 4),
                "source": "base64"
            })

        except Exception as e:
            return json.dumps({
                "error": str(e),
                "species": None,
                "confidence": 0.0
            })

    # ========================================================================
    # TOOL 2: classify_from_url (FALLBACK)
    # ========================================================================

    @mcp.tool()
    async def classify_from_url(image_url: str) -> str:
        """
        Download image from URL and classify bird species.

        Fallback tool for clients that have URL access.

        Args:
            image_url: URL to the image (https://example.com/bird.jpg)

        Returns:
            JSON string with species name and confidence score
        """
        try:
            print(f"[STATUS]: Downloading from URL...")
            response = httpx.get(image_url, follow_redirects=True, timeout=15)
            response.raise_for_status()

            image = Image.open(BytesIO(response.content))
            image = preprocess_image(image)

            results = classifier(image, top_k=1)
            top_result = results[0]

            return json.dumps({
                "species": top_result['label'],
                "confidence": round(top_result['score'], 4),
                "source": "url"
            })

        except Exception as e:
            return json.dumps({
                "error": str(e),
                "species": None,
                "confidence": 0.0
            })

    return mcp

# ============================================================================
# WEB ENDPOINT WITH AUTHENTICATION
# ============================================================================

@app.function(
    image=image,
    #gpu="L40S",
    gpu="T4",
    secrets=[API_KEY_SECRET],
    timeout=300,
    min_containers=0,
    max_containers=5,
    scaledown_window=60,
)
@modal.asgi_app()
def web():
    """ASGI web endpoint for MCP server with API key auth."""
    from fastapi import FastAPI, Request, HTTPException
    from fastapi.responses import JSONResponse

    print("[STATUS]: Starting MCP server...")

    mcp = make_mcp_server()
    mcp_app = mcp.http_app(transport="streamable-http", stateless_http=True)

    from fastapi.middleware.cors import CORSMiddleware

    fastapi_app = FastAPI(
        title="Bird Classifier MCP Server",
        description="MCP server for bird species classification",
        lifespan=mcp_app.lifespan
    )

    @fastapi_app.middleware("http")
    async def verify_api_key(request: Request, call_next):
        """Verify API key on every request"""
        api_key = request.headers.get("X-API-Key")
        expected_key = os.environ.get("API_KEY")

        if not api_key or api_key != expected_key:
            return JSONResponse(
                status_code=401,
                content={"error": "Invalid or missing API key"}
            )

        return await call_next(request)

    fastapi_app.mount("/", mcp_app)
    
    print("[STATUS]: MCP server is ready!")
    return fastapi_app

# ============================================================================
# TEST FUNCTION
# ============================================================================

@app.function(image=image, secrets=[API_KEY_SECRET])
async def test_classifier():
    """Test MCP server"""
    from fastmcp import Client
    from fastmcp.client.transports import StreamableHttpTransport   

    print("\n"+"="*70)
    print("[STATUS]: Testing Bird Classifier MCP server...")    
    print("="*70+"\n")

    server_url = f"{web.get_web_url()}/mcp/"
    
    transport = StreamableHttpTransport(
        url=server_url,
        headers={"X-API-Key": os.environ.get("API_KEY")}
    )

    client = Client(transport)

    try:
        async with client:
            # List tools
            print("\nAvailable Tools:")
            tools = await client.list_tools()
            for tool in tools:
                print(f"  - {tool.name}")

            # Test classify_from_url
            print("\n"+"="*70)
            print("[TEST 1]: classify_from_url")
            print("="*70)

            test_url = "https://images.unsplash.com/photo-1444464666168-49d633b86797?w=400"
            result = await client.call_tool(
                "classify_from_url",
                arguments={"image_url": test_url}
            )

            if result.content:
                result_text = result.content[0].text
                data = json.loads(result_text)
                print(f"[RESULT]: {data.get('species')} ({data.get('confidence'):.1%})")

    except Exception as e:
        print(f"[ERROR]: {e}")

    print("\n"+"="*70)
    print("[STATUS]: Test complete!")
    print("="*70+"\n")