Spaces:
Build error
Build error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,54 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
from transformers import DistilBertTokenizer, DistilBertForSequenceClassification
|
| 3 |
+
|
| 4 |
+
def load_model(model_path, device):
|
| 5 |
+
model = DistilBertForSequenceClassification.from_pretrained(model_path)
|
| 6 |
+
model.to(device)
|
| 7 |
+
model.eval()
|
| 8 |
+
return model
|
| 9 |
+
|
| 10 |
+
def run_inference(model, tokenizer, label_decoder, device, user_input):
|
| 11 |
+
model.eval() # Set the model to evaluation mode
|
| 12 |
+
|
| 13 |
+
# user_input = input("Enter a text for prediction: ")
|
| 14 |
+
|
| 15 |
+
# Tokenize user input
|
| 16 |
+
input_ids = tokenizer.encode(user_input, return_tensors="pt").to(device)
|
| 17 |
+
|
| 18 |
+
with torch.no_grad():
|
| 19 |
+
outputs = model(input_ids)
|
| 20 |
+
predicted_label = torch.argmax(outputs.logits, dim=1).tolist()
|
| 21 |
+
|
| 22 |
+
# Extracting the text and predicted outcome
|
| 23 |
+
input_text = tokenizer.decode(input_ids[0], skip_special_tokens=True)
|
| 24 |
+
predicted_outcome = label_decoder[predicted_label[0]]
|
| 25 |
+
|
| 26 |
+
# Display the results
|
| 27 |
+
print(f"Text: {input_text}")
|
| 28 |
+
print(f"Predicted Outcome: {predicted_outcome}")
|
| 29 |
+
print()
|
| 30 |
+
return predicted_outcome # Add a new line for better readability
|
| 31 |
+
|
| 32 |
+
# Example usage
|
| 33 |
+
model_path = "/home/lwasinam/AI_Projects/hate_speech_detection/model6" # Replace with the actual path to your model
|
| 34 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 35 |
+
tokenizer = DistilBertTokenizer.from_pretrained("distilbert-base-uncased") # Replace with your desired tokenizer
|
| 36 |
+
|
| 37 |
+
# Load model
|
| 38 |
+
model = load_model(model_path, device)
|
| 39 |
+
|
| 40 |
+
|
| 41 |
+
label_decoder = {0: "Not Hate", 1: "Hate",}
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
# Assuming you have label_decoder defined
|
| 45 |
+
|
| 46 |
+
|
| 47 |
+
import streamlit as st
|
| 48 |
+
|
| 49 |
+
st.title("Hate Speech Detection")
|
| 50 |
+
|
| 51 |
+
user_input = st.text_input("Enter your text:")
|
| 52 |
+
if user_input:
|
| 53 |
+
result = run_inference(model, tokenizer, label_decoder, device, user_input)
|
| 54 |
+
st.write("Inference Result:", result)
|