Spaces:
Running
Running
Commit
·
cba901f
1
Parent(s):
cad764a
Potentially more effecient model
Browse files- model/analyzer.py +66 -101
model/analyzer.py
CHANGED
|
@@ -1,13 +1,13 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
| 3 |
import torch
|
| 4 |
from datetime import datetime
|
| 5 |
import gradio as gr
|
| 6 |
from typing import Dict, List, Union, Optional
|
| 7 |
import logging
|
| 8 |
-
import
|
| 9 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, BitsAndBytesConfig
|
| 10 |
|
|
|
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
|
@@ -16,143 +16,108 @@ class ContentAnalyzer:
|
|
| 16 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
self.model = None
|
| 18 |
self.tokenizer = None
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
logger.info(f"Initialized analyzer with device: {self.device}")
|
|
|
|
| 20 |
|
| 21 |
-
|
| 22 |
-
"""Load
|
| 23 |
try:
|
| 24 |
-
|
| 25 |
-
progress(0.1, "Loading tokenizer...")
|
| 26 |
-
|
| 27 |
-
# Quantization configuration
|
| 28 |
-
quantization_config = BitsAndBytesConfig(
|
| 29 |
-
load_in_4bit=True,
|
| 30 |
-
bnb_4bit_compute_dtype=torch.float16,
|
| 31 |
-
bnb_4bit_quant_type="nf4"
|
| 32 |
-
)
|
| 33 |
-
|
| 34 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 35 |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
| 36 |
-
use_fast=True
|
|
|
|
| 37 |
)
|
| 38 |
-
|
| 39 |
-
if progress:
|
| 40 |
-
progress(0.3, "Loading quantized model...")
|
| 41 |
-
|
| 42 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 43 |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
)
|
| 47 |
-
|
| 48 |
-
if progress:
|
| 49 |
-
progress(0.5, "Model loaded successfully")
|
| 50 |
-
|
| 51 |
except Exception as e:
|
| 52 |
-
logger.error(f"Model loading
|
| 53 |
-
traceback.print_exc()
|
| 54 |
raise
|
| 55 |
|
| 56 |
-
def
|
| 57 |
-
"""
|
|
|
|
| 58 |
chunks = []
|
| 59 |
current_chunk = ""
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
| 63 |
else:
|
| 64 |
-
|
| 65 |
-
|
|
|
|
| 66 |
|
| 67 |
if current_chunk:
|
| 68 |
chunks.append(current_chunk.strip())
|
| 69 |
-
|
|
|
|
| 70 |
return chunks
|
| 71 |
|
| 72 |
-
async def
|
| 73 |
-
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
) -> List[str]:
|
| 77 |
-
"""Optimized single-pass chunk analysis."""
|
| 78 |
-
categories = [
|
| 79 |
-
"Violence", "Death", "Substance Use", "Gore",
|
| 80 |
-
"Vomit", "Sexual Content", "Sexual Abuse",
|
| 81 |
-
"Self-Harm", "Gun Use", "Animal Cruelty",
|
| 82 |
-
"Mental Health Issues"
|
| 83 |
-
]
|
| 84 |
-
|
| 85 |
-
prompt = f"""Analyze this text for sensitive content.
|
| 86 |
-
Categories: {', '.join(categories)}
|
| 87 |
-
Identify ALL present categories.
|
| 88 |
-
Be precise and direct.
|
| 89 |
-
Chunk: {chunk}
|
| 90 |
-
Output Format: Comma-separated category names if present."""
|
| 91 |
-
|
| 92 |
-
try:
|
| 93 |
-
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True)
|
| 94 |
-
inputs = {k: v.to(self.device) for k, v in inputs.items()}
|
| 95 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
outputs = self.model.generate(
|
| 97 |
**inputs,
|
| 98 |
-
max_new_tokens=
|
| 99 |
-
do_sample=
|
| 100 |
-
temperature=0.2,
|
| 101 |
-
top_p=0.9,
|
| 102 |
pad_token_id=self.tokenizer.eos_token_id
|
| 103 |
)
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
# Extract detected categories
|
| 108 |
-
detected = [
|
| 109 |
-
cat for cat in categories
|
| 110 |
-
if cat.upper() in response.upper()
|
| 111 |
-
]
|
| 112 |
-
|
| 113 |
-
return detected
|
| 114 |
-
|
| 115 |
-
except Exception as e:
|
| 116 |
-
logger.error(f"Chunk analysis error: {str(e)}")
|
| 117 |
-
return []
|
| 118 |
|
| 119 |
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
|
| 120 |
-
|
| 121 |
-
|
| 122 |
-
|
| 123 |
-
chunks = self._semantic_chunk_text(script)
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
return list(identified_triggers) or ["None"]
|
| 137 |
|
| 138 |
async def analyze_content(
|
| 139 |
script: str,
|
| 140 |
progress: Optional[gr.Progress] = None
|
| 141 |
) -> Dict[str, Union[List[str], str]]:
|
| 142 |
-
|
| 143 |
-
|
| 144 |
try:
|
|
|
|
| 145 |
triggers = await analyzer.analyze_script(script, progress)
|
| 146 |
-
|
| 147 |
-
|
| 148 |
"detected_triggers": triggers,
|
| 149 |
"confidence": "High - Content detected" if triggers != ["None"] else "High - No concerning content detected",
|
| 150 |
"model": "DeepSeek-R1-Distill-Qwen-1.5B",
|
| 151 |
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 152 |
}
|
| 153 |
-
|
| 154 |
-
return result
|
| 155 |
-
|
| 156 |
except Exception as e:
|
| 157 |
logger.error(f"Analysis error: {str(e)}")
|
| 158 |
return {
|
|
|
|
| 1 |
import os
|
| 2 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 3 |
import torch
|
| 4 |
from datetime import datetime
|
| 5 |
import gradio as gr
|
| 6 |
from typing import Dict, List, Union, Optional
|
| 7 |
import logging
|
| 8 |
+
import re
|
|
|
|
| 9 |
|
| 10 |
+
# Configure logging
|
| 11 |
logging.basicConfig(level=logging.INFO)
|
| 12 |
logger = logging.getLogger(__name__)
|
| 13 |
|
|
|
|
| 16 |
self.device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 17 |
self.model = None
|
| 18 |
self.tokenizer = None
|
| 19 |
+
self.categories = [
|
| 20 |
+
"Violence", "Death", "Substance Use", "Gore",
|
| 21 |
+
"Vomit", "Sexual Content", "Sexual Abuse",
|
| 22 |
+
"Self-Harm", "Gun Use", "Animal Cruelty",
|
| 23 |
+
"Mental Health Issues"
|
| 24 |
+
]
|
| 25 |
+
self.pattern = re.compile(r'\b(' + '|'.join(self.categories) + r')\b', re.IGNORECASE)
|
| 26 |
logger.info(f"Initialized analyzer with device: {self.device}")
|
| 27 |
+
self._load_model() # Load model during initialization
|
| 28 |
|
| 29 |
+
def _load_model(self) -> None:
|
| 30 |
+
"""Load model and tokenizer synchronously during initialization"""
|
| 31 |
try:
|
| 32 |
+
logger.info("Loading model components...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 33 |
self.tokenizer = AutoTokenizer.from_pretrained(
|
| 34 |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
| 35 |
+
use_fast=True,
|
| 36 |
+
truncation_side="left"
|
| 37 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
self.model = AutoModelForCausalLM.from_pretrained(
|
| 39 |
"deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B",
|
| 40 |
+
torch_dtype=torch.float32,
|
| 41 |
+
low_cpu_mem_usage=True
|
| 42 |
+
).to(self.device).eval()
|
| 43 |
+
logger.info("Model loaded successfully")
|
|
|
|
|
|
|
|
|
|
| 44 |
except Exception as e:
|
| 45 |
+
logger.error(f"Model loading failed: {str(e)}")
|
|
|
|
| 46 |
raise
|
| 47 |
|
| 48 |
+
def _chunk_text(self, text: str, chunk_size: int = 1024) -> List[str]:
|
| 49 |
+
"""Optimized chunking using paragraph boundaries"""
|
| 50 |
+
paragraphs = text.split('\n\n')
|
| 51 |
chunks = []
|
| 52 |
current_chunk = ""
|
| 53 |
+
|
| 54 |
+
for para in paragraphs:
|
| 55 |
+
if len(current_chunk) + len(para) < chunk_size:
|
| 56 |
+
current_chunk += para + "\n\n"
|
| 57 |
else:
|
| 58 |
+
if current_chunk:
|
| 59 |
+
chunks.append(current_chunk.strip())
|
| 60 |
+
current_chunk = para + "\n\n"
|
| 61 |
|
| 62 |
if current_chunk:
|
| 63 |
chunks.append(current_chunk.strip())
|
| 64 |
+
|
| 65 |
+
logger.info(f"Split text into {len(chunks)} chunks")
|
| 66 |
return chunks
|
| 67 |
|
| 68 |
+
async def _analyze_chunk(self, chunk: str) -> List[str]:
|
| 69 |
+
"""Optimized chunk analysis with structured prompt"""
|
| 70 |
+
prompt = f"""You are a highly specialized content analysis AI, Analyze this text for sensitive content from: {', '.join(self.categories)}.
|
| 71 |
+
Respond with categories in format: [CATEGORIES]:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 72 |
|
| 73 |
+
Text: {chunk[:2000]}
|
| 74 |
+
[CATEGORIES]: """
|
| 75 |
+
|
| 76 |
+
inputs = self.tokenizer(prompt, return_tensors="pt", truncation=True, max_length=2048).to(self.device)
|
| 77 |
+
|
| 78 |
+
with torch.no_grad():
|
| 79 |
outputs = self.model.generate(
|
| 80 |
**inputs,
|
| 81 |
+
max_new_tokens=50,
|
| 82 |
+
do_sample=False,
|
|
|
|
|
|
|
| 83 |
pad_token_id=self.tokenizer.eos_token_id
|
| 84 |
)
|
| 85 |
+
|
| 86 |
+
response = self.tokenizer.decode(outputs[0], skip_special_tokens=True)
|
| 87 |
+
return [m.capitalize() for m in self.pattern.findall(response)]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
|
| 89 |
async def analyze_script(self, script: str, progress: Optional[gr.Progress] = None) -> List[str]:
|
| 90 |
+
"""Main analysis method with progress support"""
|
| 91 |
+
identified_triggers = set()
|
| 92 |
+
chunks = self._chunk_text(script)
|
|
|
|
| 93 |
|
| 94 |
+
for idx, chunk in enumerate(chunks):
|
| 95 |
+
if progress:
|
| 96 |
+
progress((idx/len(chunks), f"Analyzing chunk {idx+1}/{len(chunks)}"))
|
| 97 |
+
|
| 98 |
+
triggers = await self._analyze_chunk(chunk)
|
| 99 |
+
identified_triggers.update(triggers)
|
| 100 |
+
|
| 101 |
+
if progress:
|
| 102 |
+
progress((1.0, "Analysis complete"))
|
| 103 |
+
|
| 104 |
+
return sorted(identified_triggers) if identified_triggers else ["None"]
|
|
|
|
| 105 |
|
| 106 |
async def analyze_content(
|
| 107 |
script: str,
|
| 108 |
progress: Optional[gr.Progress] = None
|
| 109 |
) -> Dict[str, Union[List[str], str]]:
|
| 110 |
+
"""Main analysis function for Gradio interface"""
|
|
|
|
| 111 |
try:
|
| 112 |
+
analyzer = ContentAnalyzer()
|
| 113 |
triggers = await analyzer.analyze_script(script, progress)
|
| 114 |
+
|
| 115 |
+
return {
|
| 116 |
"detected_triggers": triggers,
|
| 117 |
"confidence": "High - Content detected" if triggers != ["None"] else "High - No concerning content detected",
|
| 118 |
"model": "DeepSeek-R1-Distill-Qwen-1.5B",
|
| 119 |
"analysis_timestamp": datetime.now().strftime("%Y-%m-%d %H:%M:%S")
|
| 120 |
}
|
|
|
|
|
|
|
|
|
|
| 121 |
except Exception as e:
|
| 122 |
logger.error(f"Analysis error: {str(e)}")
|
| 123 |
return {
|