Spaces:
Sleeping
Sleeping
| from langchain_text_splitters import CharacterTextSplitter | |
| from langchain_huggingface import HuggingFaceEmbeddings | |
| from langchain_chroma import Chroma | |
| from langchain.docstore.document import Document | |
| import pandas as pd | |
| import os | |
| import glob | |
| # Define a function to perform vectorization for multiple CSV files | |
| def vectorize_documents(): | |
| embeddings = HuggingFaceEmbeddings() | |
| # Directory containing multiple CSV files | |
| csv_directory = "Data" # Replace with your folder name | |
| csv_files = glob.glob(os.path.join(csv_directory, "*.csv")) # Find all CSV files in the folder | |
| documents = [] | |
| # Load and concatenate all CSV files | |
| for file_path in csv_files: | |
| df = pd.read_csv(file_path) | |
| for _, row in df.iterrows(): | |
| # Combine all columns in the row into a single string | |
| row_content = " ".join(row.astype(str)) | |
| documents.append(Document(page_content=row_content)) | |
| # Splitting the text and creating chunks of these documents | |
| text_splitter = CharacterTextSplitter( | |
| chunk_size=2000, | |
| chunk_overlap=500 | |
| ) | |
| text_chunks = text_splitter.split_documents(documents) | |
| # Process text chunks in batches | |
| batch_size = 5000 # Chroma's batch size limit is 5461, set a slightly smaller size for safety | |
| for i in range(0, len(text_chunks), batch_size): | |
| batch = text_chunks[i:i + batch_size] | |
| # Store the batch in Chroma vector DB | |
| vectordb = Chroma.from_documents( | |
| documents=batch, | |
| embedding=embeddings, | |
| persist_directory="House_vectordb" | |
| ) | |
| print("Documents Vectorized and saved in VectorDB") | |
| # Expose embeddings if needed | |
| embeddings = HuggingFaceEmbeddings() | |
| # Main guard to prevent execution on import | |
| if __name__ == "__main__": | |
| vectorize_documents() |