Spaces:
Sleeping
Sleeping
File size: 1,433 Bytes
d5e03e0 6625afa d483b6b 6625afa 6303d5e 6625afa d6ea4ef 6625afa 0ff8189 535a668 aace625 535a668 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 |
import pickle
import gradio as gr
import numpy as np
import pandas as pd
import joblib
from sklearn.model_selection import train_test_split
from sklearn.feature_extraction.text import TfidfVectorizer
from sklearn.preprocessing import LabelEncoder
from sklearn.pipeline import Pipeline
from sklearn.naive_bayes import MultinomialNB
from sklearn.ensemble import RandomForestClassifier
from sklearn.metrics import accuracy_score, classification_report
import nltk
from nltk.tokenize import word_tokenize
from nltk.corpus import stopwords
from nltk.stem import WordNetLemmatizer
nltk.download('punkt')
nltk.download('stopwords')
nltk.download('wordnet')
pipe2 = joblib.load("sentiment_analysis_model.joblib")
def preprocess_nltk(text):
lemmatizer = WordNetLemmatizer()
tokens = word_tokenize(text.lower()) # Tokenization
stop_words = set(stopwords.words("english"))
filtered_tokens = [lemmatizer.lemmatize(token) for token in tokens if token.isalnum() and token not in stop_words]
return " ".join(filtered_tokens)
def prediction(text):
text_processed=(preprocess_nltk(text))
ans=pipe2.predict([text_processed])
classes = ['Irrelevant', 'Natural', 'Negative', 'Positive']
predicted_label = ans[0]
return(f"The above text is:{classes[predicted_label]}" )
pre = gr.Interface(
fn=prediction,
inputs=["text"],
outputs=[gr.Textbox(label="Prediction", lines=3)],
)
pre.launch()
|