Spaces:
Sleeping
Sleeping
File size: 7,720 Bytes
8eba60b ff3fd86 8eba60b ff3fd86 8eba60b ff3fd86 8eba60b ff3fd86 8eba60b ff3fd86 8eba60b ff3fd86 8eba60b ff3fd86 8eba60b ff3fd86 8eba60b ff3fd86 8eba60b ff3fd86 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import gradio as gr
from transformers import AutoImageProcessor, AutoModelForImageClassification
from datasets import load_dataset
import random
import torch
# Load model from Hugging Face
model_name = "Jordiett/convnextv2-geoguessr"
processor = AutoImageProcessor.from_pretrained(model_name)
model = AutoModelForImageClassification.from_pretrained(model_name)
# Load dataset
print("Loading GeoGuessr dataset...")
dataset = load_dataset("marcelomoreno26/geoguessr", split="test")
print(f"Loaded {len(dataset)} test images")
# List of countries
countries = list(model.config.id2label.values())
# Game state
class GameState:
def __init__(self):
self.player_score = 0
self.ai_score = 0
self.rounds = 0
self.current_image = None
self.correct_country = None
self.ai_prediction = None
self.ai_top3 = None
self.options = []
self.used_indices = []
game = GameState()
def get_ai_prediction(image):
"""Get AI prediction"""
inputs = processor(images=image, return_tensors="pt")
with torch.no_grad():
outputs = model(**inputs)
logits = outputs.logits
predicted_id = logits.argmax(-1).item()
probabilities = torch.nn.functional.softmax(logits, dim=-1)[0]
# Top 3 predictions
top3_prob, top3_idx = torch.topk(probabilities, 3)
top3_countries = [(model.config.id2label[idx.item()], prob.item())
for idx, prob in zip(top3_idx, top3_prob)]
return model.config.id2label[predicted_id], top3_countries
def generate_options(correct_country, ai_prediction):
"""Generate 4 options (1 correct + 3 incorrect)"""
options = [correct_country]
# Add AI prediction if it's wrong (makes it more interesting)
if ai_prediction != correct_country and ai_prediction not in options:
options.append(ai_prediction)
# Fill remaining slots with random countries
other_countries = [c for c in countries if c not in options]
needed = 4 - len(options)
options.extend(random.sample(other_countries, needed))
random.shuffle(options)
return options
def new_round():
"""Start a new round with a random image from the dataset"""
# Select a random image that hasn't been used yet
available_indices = [i for i in range(len(dataset)) if i not in game.used_indices]
if len(available_indices) == 0:
# Reset if all images have been used
game.used_indices = []
available_indices = list(range(len(dataset)))
idx = random.choice(available_indices)
game.used_indices.append(idx)
# Get image and label from dataset
sample = dataset[idx]
image = sample["image"]
game.correct_country = sample["label"]
game.current_image = image
# Get AI prediction (but don't show it yet!)
ai_pred, top3 = get_ai_prediction(image)
game.ai_prediction = ai_pred
game.ai_top3 = top3
# Generate options
game.options = generate_options(game.correct_country, ai_pred)
return (
image,
"๐ **Where do you think this image is from?**\n\nMake your choice before seeing the AI's prediction!",
gr.update(choices=game.options, value=None, visible=True),
gr.update(visible=True),
f"๐ฎ Player: {game.player_score} | ๐ค AI: {game.ai_score} | ๐ฏ Rounds: {game.rounds}",
"" # Clear previous result
)
def check_answer(player_choice):
"""Check player's answer"""
if player_choice is None:
return "โ ๏ธ Please select an option!", gr.update(visible=True)
game.rounds += 1
# Check if player is correct
player_correct = (player_choice == game.correct_country)
if player_correct:
game.player_score += 1
# Check if AI is correct
ai_correct = (game.ai_prediction == game.correct_country)
if ai_correct:
game.ai_score += 1
# Result message
result = f"## ๐ฏ Round {game.rounds} Result\n\n"
result += f"**Correct country:** {game.correct_country}\n\n"
# Show comparison
if player_correct and ai_correct:
result += "๐ **It's a tie!** Both you and the AI got it right!\n"
elif player_correct:
result += "๐ **You win!** The AI was wrong.\n"
elif ai_correct:
result += "๐ค **AI wins!** You were wrong.\n"
else:
result += "โ **Both failed!**\n"
result += f"\n**Your answer:** {player_choice} {'โ
' if player_correct else 'โ'}\n"
result += f"**AI prediction:** {game.ai_prediction} {'โ
' if ai_correct else 'โ'}\n"
# Show AI's top 3 predictions
result += f"\n**AI's top 3 predictions:**\n"
for country, prob in game.ai_top3:
result += f"- {country}: {prob*100:.1f}%\n"
# Calculate win rate
if game.rounds > 0:
player_rate = (game.player_score / game.rounds) * 100
ai_rate = (game.ai_score / game.rounds) * 100
result += f"\n---\n"
result += f"**Your accuracy:** {player_rate:.1f}% ({game.player_score}/{game.rounds})\n"
result += f"**AI accuracy:** {ai_rate:.1f}% ({game.ai_score}/{game.rounds})\n"
return result, gr.update(visible=True)
def reset_game():
"""Reset the game"""
game.player_score = 0
game.ai_score = 0
game.rounds = 0
game.used_indices = []
return (
None,
"๐ฎ **Game reset!** Click 'New Round' to start playing.",
gr.update(choices=[], value=None, visible=False),
gr.update(visible=False),
"๐ฎ Player: 0 | ๐ค AI: 0 | ๐ฏ Rounds: 0",
""
)
# Gradio Interface
with gr.Blocks(theme=gr.themes.Soft(), title="GeoGuessr: Player vs AI") as demo:
gr.Markdown("""
# ๐ GeoGuessr: Player vs AI
Compete against an AI trained with ConvNeXt V2 to guess countries from Google Street View images!
**How to play:**
1. Click "๐ฎ New Round" to load a random image from the GeoGuessr dataset
2. Choose one of the 4 proposed countries
3. Click "โ
Check Answer" to see if you beat the AI!
**Model:** ConvNeXt V2 Base (61% accuracy, 51.77% F1-macro)
""")
with gr.Row():
with gr.Column(scale=2):
image_display = gr.Image(type="pil", label="๐ธ Street View Image", interactive=False)
start_btn = gr.Button("๐ฎ New Round", variant="primary", size="lg")
with gr.Column(scale=1):
scoreboard = gr.Markdown("๐ฎ Player: 0 | ๐ค AI: 0 | ๐ฏ Rounds: 0")
reset_btn = gr.Button("๐ Reset Game", variant="secondary")
question = gr.Markdown("โฌ๏ธ Click 'New Round' to start!")
options = gr.Radio(
choices=[],
label="๐ Select the country:",
visible=False
)
submit_btn = gr.Button("โ
Check Answer", variant="primary", visible=False)
result = gr.Markdown("")
# Events
start_btn.click(
fn=new_round,
inputs=[],
outputs=[image_display, question, options, submit_btn, scoreboard, result]
)
submit_btn.click(
fn=check_answer,
inputs=[options],
outputs=[result, start_btn]
)
reset_btn.click(
fn=reset_game,
outputs=[image_display, question, options, submit_btn, scoreboard, result]
)
gr.Markdown("""
---
**Dataset:** [GeoGuessr by marcelomoreno26](https://huggingface.co/datasets/marcelomoreno26/geoguessr)
**Model:** [ConvNeXt V2 GeoGuessr by Jordiett](https://huggingface.co/Jordiett/convnextv2-geoguessr)
Images are randomly selected from the test set of the GeoGuessr dataset.
""")
if __name__ == "__main__":
demo.launch() |