File size: 4,975 Bytes
09eaf7c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
# -*- coding: utf-8 -*-
"""
tools/step047_emotion_auto_batch.py
Batch tuner that uses the rate-safe, extra-obvious DSP (step045).
"""
from __future__ import annotations
import os, glob
from typing import Optional, Tuple, List

import numpy as np
import soundfile as sf
from loguru import logger

from .step045_emotion import auto_tune_emotion

def _downmix_mono(y: np.ndarray) -> np.ndarray:
    y = np.asarray(y, dtype=np.float32)
    if y.ndim == 2: y = y.mean(axis=1)
    return y.astype(np.float32, copy=False)

def _xfade(a: np.ndarray, b: np.ndarray, xfade_samples: int) -> np.ndarray:
    a = np.asarray(a, dtype=np.float32); b = np.asarray(b, dtype=np.float32)
    if xfade_samples <= 0 or len(a) == 0: return np.concatenate([a,b]).astype(np.float32, copy=False)
    if len(b) == 0: return a
    x = min(int(xfade_samples), len(a), len(b))
    fo = np.linspace(1.0, 0.0, x, dtype=np.float32); fi = 1.0 - fo
    head = a[:-x] if x < len(a) else np.zeros(0, dtype=np.float32)
    tail = a[-x:] * fo + b[:x] * fi
    rest = b[x:]
    return np.concatenate([head, tail, rest]).astype(np.float32, copy=False)

def _segment_indices(n: int, sr: int, win_s: float, hop_s: float) -> List[Tuple[int,int]]:
    win = int(round(win_s*sr)); hop = int(round(hop_s*sr))
    if win <= 0 or hop <= 0: return [(0,n)]
    i=0; out=[]
    while i < n:
        j = min(n, i+win); out.append((i,j))
        if j >= n: break
        i += hop
    return out

def _safe_write(path: str, y: np.ndarray, sr: int):
    y = np.asarray(y, dtype=np.float32)
    peak = float(np.max(np.abs(y)) + 1e-8)
    if peak > 1.0: y = (y / peak).astype(np.float32)
    sf.write(path, y, sr)

def _parse_auto_preset(emotion: str) -> Optional[str]:
    if not emotion: return None
    e = emotion.strip().lower()
    if e == "auto": return "happy"
    if e.startswith("auto-"): return e.split("-",1)[1].strip() or "happy"
    return None

def auto_tune_emotion_all_wavs_under_folder(
    folder: str,
    emotion: str = "auto-angry",
    strength: float = 0.85,
    lang_hint: str = "en",
    win_s: float = 10.0,
    hop_s: float = 9.0,
    xfade_ms: int = 28,
    latency_budget_s: float = 1.0,
    min_confidence: float = 0.40,
    max_iters: int = 6,
    exaggerate: bool = True,
) -> tuple[bool, str]:
    target = _parse_auto_preset(emotion)
    if target is None: return False, f"Emotion '{emotion}' is not an auto-* mode"

    wav_dir = os.path.join(folder, "wavs")
    if not os.path.isdir(wav_dir): return False, f"No wavs dir: {wav_dir}"
    paths = sorted(glob.glob(os.path.join(wav_dir, "*.wav")))
    if not paths: return False, f"No wav files in {wav_dir}"

    processed = 0
    xfade_cache = {}

    for p in paths:
        try:
            y, sr = sf.read(p, dtype="float32", always_2d=False)
            y = _downmix_mono(y)
            n = len(y)
            if n == 0:
                logger.warning(f"[EmotionAutoBatch] Empty file skipped: {p}")
                continue

            spans = _segment_indices(n, sr, win_s, hop_s)
            xfade = xfade_cache.get(sr)
            if xfade is None:
                xfade = max(0, int(round(xfade_ms * 1e-3 * sr)))
                xfade_cache[sr] = xfade

            out = np.zeros(0, dtype=np.float32)
            last_v, last_a, last_cf = 0.0, 0.0, 0.0

            for (i0,i1) in spans:
                seg = y[i0:i1]
                tuned, meta = auto_tune_emotion(
                    seg, sr,
                    target_preset=target,
                    strength=strength,
                    lang=lang_hint,
                    sentence_times=None,
                    latency_budget_s=latency_budget_s,
                    min_confidence=min_confidence,
                    max_iters=max_iters,
                    exaggerate=exaggerate,
                )
                final = meta.get("final", {}) or {}
                v = float(final.get("valence", 0.0) or 0.0)
                a = float(final.get("arousal", 0.0) or 0.0)
                cf = float(final.get("confidence", 0.0) or 0.0)

                logger.debug(
                    f"[EmotionAutoBatch] {os.path.basename(p)} [{i0/sr:.2f}-{i1/sr:.2f}s] "
                    f"target={target}{' EXAG' if exaggerate else ''} → "
                    f"v={v:+.2f} a={a:+.2f} conf={cf:.2f}"
                )

                last_v, last_a, last_cf = v, a, cf
                out = _xfade(out, tuned, xfade) if len(out) else tuned

            _safe_write(p, out, sr)
            processed += 1
            logger.info(
                f"[EmotionAutoBatch] Auto-tuned {target} ({strength:.2f}) "
                f"{'[EXAG]' if exaggerate else ''} → "
                f"{os.path.basename(p)} | final: v={last_v:+.2f} a={last_a:+.2f} conf={last_cf:.2f}"
            )

        except Exception as e:
            logger.exception(f"[EmotionAutoBatch] Failed '{p}': {e}")

    return True, f"Auto-tuned {processed} file(s) to {target} ({strength:.2f}) with rate clamped."