Spaces:
Build error
Build error
File size: 32,200 Bytes
09eaf7c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 |
# -*- coding: utf-8 -*-
"""
Step030 — Translation pipeline (robust + language-aware + enforcement) [streamlined]
Goal: Proper translation + storage to JSON quickly, without breaking existing usage.
Key tweaks:
- Early skip for non-speech tokens (e.g., "[LAUGHTER]") to avoid wasted calls.
- Normalized de-dup (spacing/case) so repeated lines translate once.
- Optional FAST mode to prefer MT path automatically (env toggle; default off).
- Parallel MT path preserved; safer caching; tighter sleeps/backoff.
- Stricter "absolute translation" enforcement (rejects same-language paraphrases) with smart relaxations.
- Progressive validation (strict → relaxed) + faster MT fallback.
- Atomic writes for JSON outputs.
- NEW: Strip <t>...</t> wrappers from all final outputs (no <t> in translation.json).
Public APIs preserved:
summarize(...)
translate(...)
translate_all_transcript_under_folder(...)
"""
from __future__ import annotations
import json
import os
import re
import time
import string
from typing import List, Dict, Tuple, Any, Optional
from functools import lru_cache
from concurrent.futures import ThreadPoolExecutor, as_completed
from dotenv import load_dotenv
from loguru import logger
# Backends (keep your existing modules/paths)
from tools.step032_translation_llm import llm_response
from tools.step033_translation_translator import translator_response
load_dotenv()
# ============================================================
# Tunables (perf+behavior knobs; defaults conservative)
# ============================================================
ENABLE_BACKTRANSLATE_VERIFY = os.getenv("TRANSLATION_BACKTRANSLATE_VERIFY", "0") == "1"
ENABLE_DEDUP_SAME_LINES = os.getenv("TRANSLATION_DEDUP", "1") == "1"
MT_MAX_WORKERS = max(1, int(os.getenv("TRANSLATION_MT_MAX_WORKERS", "4"))) # only used on MT path
RETRY_SLEEP_S = float(os.getenv("TRANSLATION_RETRY_SLEEP", "0.2"))
SMALL_SLEEP_S = float(os.getenv("TRANSLATION_SMALL_SLEEP", "0.03"))
LLM_MAX_RETRIES = max(1, int(os.getenv("TRANSLATION_LLM_MAX_RETRIES", "3"))) # default 3
LLM_HISTORY_WINDOW = max(12, int(os.getenv("TRANSLATION_LLM_HISTORY_WINDOW", "14")))
SUMMARY_TEXT_LIMIT = max(800, int(os.getenv("TRANSLATION_SUMMARY_TEXT_LIMIT", "1600")))
FAST_TRANSLATION_MODE = os.getenv("TRANSLATION_FAST_MODE", "0") == "1" # prefer MT path automatically
# Non-speech pattern (skip heavy translation path)
_NON_SPEECH = re.compile(
r'^\s*\[(?:music|applause|laughter|silent|silence|noise|beat|pause|inaudible|coughs|cough|breath|breathing)[^\]]*\]\s*$',
re.I
)
# ============================================================
# Precompiled regexes
# ============================================================
_RE_FW_PARENS = re.compile(r'\([^)]*\)')
_RE_NUM_COMMA = re.compile(r'(?<=\d),(?=\d)')
_RE_JSON_FENCE = re.compile(r"```json\s*(\{.*?\})\s*```", re.DOTALL | re.IGNORECASE)
_RE_PREFIXES = [
re.compile(pat, re.IGNORECASE | re.DOTALL)
for pat in [
r'^\s*translated\s*text\s*:\s*(.+)$',
r'^\s*translation\s*:\s*(.+)$',
r'^\s*译文\s*[::]\s*(.+)$',
r'^\s*翻译\s*[::]\s*(.+)$',
r'^\s*resultado\s*[::]\s*(.+)$',
r'^\s*traducci[oó]n\s*[::]\s*(.+)$',
]
]
_RE_CJK = re.compile(r'[\u3400-\u4dbf\u4e00-\u9fff\uf900-\ufaff]')
_RE_HIRA = re.compile(r'[\u3040-\u309f]')
_RE_KATA = re.compile(r'[\u30a0-\u30ff]')
_RE_HANG = re.compile(r'[\uac00-\ud7af]')
_RE_LATN = re.compile(r'[A-Za-z]')
_PUNC_TABLE = str.maketrans('', '', string.punctuation + ",。!?;:、“”‘’—…《》·")
# Strip <t>...</t> safely (NEW)
_RE_T_WRAPPER = re.compile(r'^\s*<t\s*>(.*?)</t\s*>\s*$', re.IGNORECASE | re.DOTALL)
_RE_T_TAGS = re.compile(r'</?t\s*>', re.IGNORECASE)
def _strip_t_tags(s: str) -> str:
if not s:
return s
m = _RE_T_WRAPPER.match(s)
if m:
return m.group(1).strip()
# If it's not a perfect single wrapper, remove any loose <t> / </t> occurrences
return _RE_T_TAGS.sub('', s).strip()
# For CN sentence splitting
_RE_CN_SPLIT_1 = re.compile(r'([。!?\?])([^,。!?\?”’》])')
_RE_CN_SPLIT_2 = re.compile(r'(\.{6})([^,。!?\?”’》])') # ......
_RE_CN_SPLIT_3 = re.compile(r'(\…{2})([^,。!?\?”’》])') # ……
_RE_CN_SPLIT_4 = re.compile(r'([。!?\?][”’])([^ ,。!?\?”’》])')
_RE_LAT_SPLIT = re.compile(r'(?<=[.!?])\s+')
# ============================================================
# Utilities & small helpers
# ============================================================
def get_necessary_info(info: dict) -> dict:
return {
'title': info.get('title', ''),
'uploader': info.get('uploader', ''),
'description': info.get('description', ''),
'upload_date': info.get('upload_date', ''),
'tags': info.get('tags', []),
}
def ensure_transcript_length(transcript: str, max_length: int = 4000) -> str:
if len(transcript) <= max_length:
return transcript
mid = len(transcript) // 2
half = max_length // 2
return transcript[:mid][:half] + transcript[mid:][-half:]
def _is_chinese_target(lang: str) -> bool:
lang = (lang or "").lower()
return any(k in lang for k in ["zh", "简体", "繁体", "中文", "chinese"])
def translation_postprocess(result: str, target_language: str = "简体中文") -> str:
result = (result or "").strip()
result = _strip_t_tags(result) # ensure <t> never survives
result = _RE_FW_PARENS.sub('', result)
result = _RE_NUM_COMMA.sub('', result)
result = result.replace('²', '^2')
if _is_chinese_target(target_language):
result = (result
.replace('...', ',')
.replace('————', ':')
.replace('——', ':')
.replace('°', '度')
.replace('变压器', 'Transformer')
.replace('AI', '人工智能'))
return result
def _extract_first_json_object(text: str) -> dict:
if not text:
raise ValueError("Empty text")
m = _RE_JSON_FENCE.search(text)
if m:
return json.loads(m.group(1).strip())
# Brace-balance scan
start = text.find("{")
while start != -1:
depth = 0
for i in range(start, len(text)):
ch = text[i]
if ch == "{":
depth += 1
elif ch == "}":
depth -= 1
if depth == 0:
candidate = text[start:i+1]
try:
return json.loads(candidate)
except Exception:
break
start = text.find("{", start + 1)
raise ValueError("No valid JSON object found in text")
def _pluck_translation_payload(raw: str) -> str:
if not raw:
return ""
t = raw.strip()
if t.startswith("```") and t.endswith("```"):
t = t[3:-3].strip()
try:
obj = _extract_first_json_object(t)
for key in ("translation", "译文", "resultado", "traducción", "traduccion"):
val = obj.get(key)
if isinstance(val, str) and val.strip():
return _strip_t_tags(val.strip()) # strip <t> here
except Exception:
pass
for rex in _RE_PREFIXES:
m = rex.match(t)
if m:
t = m.group(1).strip()
break
m = (re.search(r'“([^”]+)”', t) or
re.search(r'"([^"]+)"', t) or
re.search(r'‘([^’]+)’', t) or
re.search(r"'([^']+)'", t))
if m and len(m.group(1).strip()) >= 1:
return _strip_t_tags(m.group(1).strip()) # strip <t> here
wrappers = ['“', '”', '"', '‘', '’', "'", '《', '》', '「', '」', '『', '』']
while len(t) >= 2 and t[0] in wrappers and t[-1] in wrappers:
t = t[1:-1].strip()
return _strip_t_tags(t.strip()) # strip <t> here
# ============================================================
# Language normalization & detection
# ============================================================
def _norm_lang_label(label: str) -> str:
if not label:
return "unknown"
s = label.strip().lower()
mapping = {
"chinese": "zh", "simplified chinese": "zh", "zh": "zh", "zh-cn": "zh", "zh_cn": "zh",
"简体中文": "zh", "中文": "zh",
"english": "en", "en": "en", "en-us": "en", "en_gb": "en",
"japanese": "ja", "ja": "ja", "日本語": "ja",
"korean": "ko", "ko": "ko", "韩国语": "ko", "한국어": "ko",
"spanish": "es", "es": "es", "español": "es",
"french": "fr", "fr": "fr", "français": "fr",
}
return mapping.get(s, "unknown")
def _heuristic_lang(text: str) -> str:
t = text or ""
cjk = len(_RE_CJK.findall(t))
hira = len(_RE_HIRA.findall(t))
kata = len(_RE_KATA.findall(t))
hang = len(_RE_HANG.findall(t))
latin = len(_RE_LATN.findall(t))
if (hira + kata) > 0:
return "ja"
if hang > 0:
return "ko"
if cjk > 0 and (hira + kata + hang) == 0:
return "zh"
if latin > 0 and (cjk + hira + kata + hang) == 0:
return "en"
return "unknown"
try:
import cld3 # type: ignore
def _detect_lang(text: str) -> str:
# heuristic first (cheap), CLD3 if needed
h = _heuristic_lang(text)
if h != "unknown":
return h
res = cld3.get_language(text or "")
if res and res.language:
code = res.language.lower()
if code.startswith("zh"): return "zh"
if code.startswith("en"): return "en"
if code.startswith("ja"): return "ja"
if code.startswith("ko"): return "ko"
if code.startswith("es"): return "es"
if code.startswith("fr"): return "fr"
if code.startswith("pl"): return "pl"
return h
except Exception:
def _detect_lang(text: str) -> str:
return _heuristic_lang(text)
# ============================================================
# Similarity / overlap guards
# ============================================================
def _token_set(s: str) -> set:
s = (s or "").lower().translate(_PUNC_TABLE)
return set(s.split())
def _too_similar_to_source(src: str, tgt: str, threshold: float = 0.92) -> bool:
ts, tt = _token_set(src), _token_set(tgt)
if not ts or not tt:
return False
overlap = len(ts & tt) / max(1, len(ts | tt))
return overlap >= threshold
# ============================================================
# Tiny / numeric inputs helpers
# ============================================================
_MICRO_MAX = 3
_RE_NUMERICISH = re.compile(r'^[\d\W_]+$') # digits/punct/underscore only (no letters)
def _is_micro_utterance(s: str) -> bool:
return len((s or "").strip()) <= _MICRO_MAX
def _is_numericish(s: str) -> bool:
return bool(_RE_NUMERICISH.fullmatch((s or "").strip()))
# ============================================================
# Back-translation verification (optional)
# ============================================================
def _verify_by_backtranslation(src_text: str, tgt_text: str, target_language: str) -> bool:
# Skip noisy verification for tiny/numeric content
if _is_micro_utterance(src_text) or _is_numericish(src_text):
return True
try:
src_code = _detect_lang(src_text)
src_label = {
"zh": "Chinese", "en": "English", "ja": "Japanese", "ko": "Korean",
"es": "Spanish", "fr": "French"
}.get(src_code, "English")
bt = translator_response(tgt_text, to_language=src_label, translator_server='google')
ts, tb = _token_set(src_text), _token_set(bt)
if not ts or not tb:
return True
jacc = len(ts & tb) / max(1, len(ts | tb))
return jacc >= 0.25
except Exception:
return True
# ============================================================
# Validation — enforces absolute translation (with progressive strictness)
# ============================================================
def valid_translation(
text: str,
translation: str,
target_language: str = "简体中文",
*,
strict: bool = True
) -> Tuple[bool, str]:
t = _pluck_translation_payload(translation)
if not t:
return False, 'Only translate the following sentence and give me the result.'
# Postprocess early (also strips <t> if any)
t = translation_postprocess(t, target_language)
src_len = len(text or "")
out_len = len(t)
# Allow a bit more expansion; looser when strict=False
limit = max(24, int(src_len * (3.0 if strict else 3.6)))
if src_len > 10 and out_len > limit:
return False, 'The translation is too long. Only translate the sentence and give me the result.'
if src_len <= 10 and out_len > (50 if not strict else 40):
return False, 'Only translate the sentence and give me the result.'
target_code = _norm_lang_label(target_language)
trans_code = _detect_lang(t)
src_code = _detect_lang(text)
# Micro-utterance fast path: only enforce language
if _is_micro_utterance(text):
if target_code != "unknown" and trans_code != "unknown" and trans_code != target_code:
return False, f'Output must be in {target_language}. Only output the translation (no explanations).'
return True, t
# Must be in target language
if target_code != "unknown" and trans_code != "unknown" and trans_code != target_code:
return False, f'Output must be in {target_language}. Only output the translation (no explanations).'
# Hard reject same-language paraphrase (threshold slightly stricter)
if trans_code != "unknown" and src_code != "unknown" and trans_code == src_code:
if _too_similar_to_source(text, t, threshold=0.92):
return False, f'The output is not a translation. Translate into {target_language} and output only the translated text.'
# Script coverage guards (RELAXED)
if target_code == "zh":
cjk = len(_RE_CJK.findall(t))
min_ratio = 0.30 if strict else 0.25
if out_len > 0 and (cjk / out_len) < min_ratio:
return False, 'Output must be in Chinese. Only output the translation.'
if target_code == "ja":
kana = len(_RE_HIRA.findall(t)) + len(_RE_KATA.findall(t))
min_ratio = 0.12 if strict else 0.10
if out_len > 0 and (kana / out_len) < min_ratio and len(_RE_CJK.findall(t)) < 2:
return False, 'Output must be in Japanese. Only output the translation.'
if target_code == "ko":
hang = len(_RE_HANG.findall(t))
min_ratio = 0.25 if strict else 0.20
if out_len > 0 and (hang / out_len) < min_ratio:
return False, 'Output must be in Korean. Only output the translation.'
# Some visible text required
if not re.search(r'\w', t, flags=re.UNICODE) and not _RE_CJK.search(t):
return False, 'Only output the translation text.'
return True, t
# ============================================================
# Sentence splitting & timing
# ============================================================
def split_text_into_sentences(para: str, target_language: str = "简体中文") -> List[str]:
para = (para or "").strip()
if not para:
return []
if _is_chinese_target(target_language):
para = _RE_CN_SPLIT_1.sub(r"\1\n\2", para)
para = _RE_CN_SPLIT_2.sub(r"\1\n\2", para)
para = _RE_CN_SPLIT_3.sub(r"\1\n\2", para)
para = _RE_CN_SPLIT_4.sub(r'\1\n\2', para)
return [s.strip() for s in para.rstrip().split("\n") if s.strip()]
return [p.strip() for p in _RE_LAT_SPLIT.split(para) if p.strip()]
def split_sentences(translation_items: List[Dict], target_language: str = "简体中文", use_char_based_end: bool = True) -> List[Dict]:
output = []
for item in translation_items:
start = float(item['start'])
end = float(item['end'])
text = item['text']
speaker = item['speaker']
translation_text = (item.get('translation') or "").strip()
if not translation_text:
output.append({
"start": round(start, 3),
"end": round(end, 3),
"text": text,
"speaker": speaker,
"translation": translation_text
})
continue
sentences = split_text_into_sentences(translation_text, target_language) or [translation_text]
if use_char_based_end:
total_chars = max(1, sum(len(s) for s in sentences))
duration = end - start
acc = start
for i, s in enumerate(sentences):
if i < len(sentences) - 1:
seg = duration * (len(s) / total_chars)
seg_end = acc + seg
else:
seg_end = end
output.append({
"start": round(acc, 3),
"end": round(seg_end, 3),
"text": text,
"speaker": speaker,
"translation": s
})
acc = seg_end
else:
for s in sentences:
output.append({
"start": round(start, 3),
"end": round(end, 3),
"text": text,
"speaker": speaker,
"translation": s
})
return output
# ============================================================
# Summarization + summary translate (kept; fast limit)
# ============================================================
def summarize(info: dict, transcript: List[dict], target_language: str = '简体中文', method: str = 'LLM') -> dict:
transcript_text = ' '.join(line.get('text', '') for line in transcript)
transcript_text = ensure_transcript_length(transcript_text, max_length=SUMMARY_TEXT_LIMIT)
info_message = f'Title: "{info["title"]}" Author: "{info["uploader"]}". '
if method in ['Google Translate', 'Bing Translate']:
full_description = f'{info_message}\n{transcript_text}\n{info_message}\n'
translation = translator_response(full_description, target_language)
return {
'title': translator_response(info['title'], target_language),
'author': info['uploader'],
'summary': translation,
'language': target_language,
'tags': info.get('tags', [])
}
schema_hint = (
'Return ONLY JSON with the keys "title" and "summary". '
'Example: {"title": "t", "summary": "s"}'
)
messages = [
{'role': 'system',
'content': f'You are an expert in the field of this video. {schema_hint}'},
{'role': 'user',
'content': f'The following is the full content of the video:\n'
f'{info_message}\n{transcript_text}\n{info_message}\n'
f'Please summarize the video in JSON only.'},
]
summary_obj = None
for attempt in range(6):
try:
response = llm_response(messages) if method == 'LLM' else None
logger.debug(f"[summarize] raw response (attempt {attempt+1}): {str(response)[:300]}...")
summary_obj = _extract_first_json_object(response)
t = (summary_obj.get('title') or '').strip()
s = (summary_obj.get('summary') or '').strip()
if not t or not s or 'title' in t.lower():
raise ValueError("Invalid summary fields")
break
except Exception as e:
logger.debug(f"[summarize] parse error: {e}")
time.sleep(RETRY_SLEEP_S)
if summary_obj is None:
# graceful fallback: a minimal summary using info
summary_obj = {"title": info.get("title", "Untitled"), "summary": info.get("description", "")}
safe_title = summary_obj["title"].replace('"', '\\"')
safe_summary = summary_obj["summary"].replace('"', '\\"')
safe_tags = json.dumps(info.get("tags", []), ensure_ascii=False)
trans_messages = [
{'role': 'system',
'content': (
f'You are a native speaker of {target_language}. '
f'Return ONLY JSON: {{"title": "...", "summary": "...", "tags": ["..."]}}'
)},
{'role': 'user',
'content': (
f'Please translate the following into {target_language} and return JSON only:\n'
f'{{"title": "{safe_title}", "summary": "{safe_summary}", "tags": {safe_tags} }}'
)}
]
trans = None
for attempt in range(5):
try:
resp = llm_response(trans_messages)
resp = resp.strip()
logger.debug(f"[summarize-translate] raw response (attempt {attempt+1}): {resp[:300]}...")
trans = _extract_first_json_object(resp)
if not trans.get('title') or not trans.get('summary'):
raise ValueError("Missing fields")
break
except Exception as e:
logger.debug(f"[summarize-translate] parse error: {e}")
time.sleep(RETRY_SLEEP_S)
if trans is None:
trans = {
'title': summary_obj['title'],
'summary': summary_obj['summary'],
'tags': info.get('tags', [])
}
title = (trans.get('title', '')).strip().strip('“”"‘’\'《》')
return {
'title': title,
'author': info.get('uploader', ''),
'summary': (trans.get('summary', '')).strip(),
'tags': trans.get('tags', info.get('tags', [])),
'language': target_language
}
# ============================================================
# Line-by-line translation (LLM path kept; MT path fast/parallel)
# ============================================================
@lru_cache(maxsize=4096)
def _mt_cached(text: str, target_language: str, server: str) -> str:
return translator_response(text, to_language=target_language, translator_server=server)
def _norm_key(s: str) -> str:
return re.sub(r'\s+', ' ', (s or '').strip().lower())
def _translate_llm_path(summary: dict, transcript: List[dict], target_language: str) -> List[str]:
info = f'This is a video called "{summary["title"]}". {summary["summary"]}.'
full_translation: List[str] = []
fixed_message = [
{
'role': 'system',
'content': (
f'You are a professional translator.\n'
f'Context (terminology only): {info}\n'
f'RULES (must obey exactly):\n'
f'1) Translate the quoted sentence into {target_language}.\n'
f'2) Output ONLY inside tags: <t>...translation...</t>\n'
f'3) No other text, no quotes, no markdown, no explanations.\n'
f'4) Do NOT paraphrase in the original language; output MUST be in {target_language}.\n'
f'5) Preserve numbers and technical terms faithfully.\n'
)
},
{'role': 'user', 'content': 'Translate: "Original Text"'},
{'role': 'assistant', 'content': '<t>Example translation</t>'}
]
history: List[Dict[str, Any]] = []
dedup_cache: Dict[str, str] = {}
for line_idx, line in enumerate(transcript):
text = line.get('text', '')
if not text or _NON_SPEECH.match(text):
full_translation.append('')
continue
key = _norm_key(text)
if ENABLE_DEDUP_SAME_LINES and key in dedup_cache:
full_translation.append(dedup_cache[key])
history = history[-LLM_HISTORY_WINDOW:]
history += [
{'role': 'user', 'content': f'Translate: "{text}"'},
{'role': 'assistant', 'content': dedup_cache[key]},
]
time.sleep(SMALL_SLEEP_S)
continue
retry_hint = ''
success = False
last_err = None
for attempt in range(LLM_MAX_RETRIES):
strict = (attempt == 0) # first attempt strict, later attempts relaxed
messages = fixed_message + history[-LLM_HISTORY_WINDOW:] + [
{'role': 'user',
'content': f'{retry_hint}Translate the following and output ONLY <t>...</t>:\n"{text}"'}
]
try:
resp = llm_response(messages)
ok, t_clean = valid_translation(text, resp, target_language, strict=strict)
do_bt = ENABLE_BACKTRANSLATE_VERIFY and not (_is_micro_utterance(text) or _is_numericish(text))
if ok and do_bt:
if not _verify_by_backtranslation(text, t_clean, target_language):
ok = False
retry_hint = "Ensure the output is a faithful translation into the target language. "
raise ValueError("Back-translation verification failed")
if not ok:
retry_hint = "Only output the translation. No quotes. No markdown. "
raise ValueError("Invalid translation output")
full_translation.append(t_clean)
if ENABLE_DEDUP_SAME_LINES:
dedup_cache[key] = t_clean
success = True
break
except Exception as e:
last_err = e
logger.debug(f"[translate-LLM] retryable issue at idx={line_idx}: {e}")
time.sleep(RETRY_SLEEP_S)
if not success:
try:
mt_fallback = _mt_cached(text, target_language, 'google')
ok, t_clean = valid_translation(text, mt_fallback, target_language, strict=False)
if ok and ENABLE_BACKTRANSLATE_VERIFY and not (_is_micro_utterance(text) or _is_numericish(text)):
if not _verify_by_backtranslation(text, t_clean, target_language):
ok = False
full_translation.append(t_clean if ok else text)
if ok and ENABLE_DEDUP_SAME_LINES:
dedup_cache[key] = t_clean
logger.warning(f"[translate-line] fell back to MT for a line due to: {last_err}")
except Exception as ee:
logger.warning(f"[translate-line] MT fallback failed: {ee}")
full_translation.append(text)
history = history[-LLM_HISTORY_WINDOW:]
history += [
{'role': 'user', 'content': f'Translate: "{text}"'},
{'role': 'assistant', 'content': full_translation[-1]},
]
time.sleep(SMALL_SLEEP_S)
return full_translation
def _translate_mt_path(transcript: List[dict], target_language: str, server: str) -> List[str]:
texts = [(i, line.get('text', '')) for i, line in enumerate(transcript)]
results = [''] * len(texts)
if MT_MAX_WORKERS <= 1:
for i, t in texts:
if not t or _NON_SPEECH.match(t):
results[i] = ''
continue
mt = _mt_cached(t, target_language, server)
ok, t_clean = valid_translation(t, mt, target_language) # strict default
if ok and ENABLE_BACKTRANSLATE_VERIFY and not _is_micro_utterance(t) and not _is_numericish(t):
if not _verify_by_backtranslation(t, t_clean, target_language):
ok = False
results[i] = t_clean if ok else t
time.sleep(SMALL_SLEEP_S)
return results
with ThreadPoolExecutor(max_workers=MT_MAX_WORKERS) as ex:
futs = {}
for i, t in texts:
if not t or _NON_SPEECH.match(t):
results[i] = ''
continue
futs[ex.submit(_mt_cached, t, target_language, server)] = (i, t)
for fut in as_completed(futs):
i, src = futs[fut]
try:
mt = fut.result()
ok, t_clean = valid_translation(src, mt, target_language) # strict default
if ok and ENABLE_BACKTRANSLATE_VERIFY and not _is_micro_utterance(src) and not _is_numericish(src):
if not _verify_by_backtranslation(src, t_clean, target_language):
ok = False
results[i] = t_clean if ok else src
except Exception as e:
logger.debug(f"[translate-mt] worker error: {e}")
results[i] = src
return results
def _translate(summary: dict, transcript: List[dict], target_language: str = '简体中文', method: str = 'LLM') -> List[str]:
# FAST mode: prefer MT path unless explicitly forced to LLM
if FAST_TRANSLATION_MODE and method not in ['Google Translate', 'Bing Translate', 'LLM']:
method = 'Google Translate'
if method in ['Google Translate', 'Bing Translate']:
server = 'google' if method == 'Google Translate' else 'bing'
return _translate_mt_path(transcript, target_language, server)
return _translate_llm_path(summary, transcript, target_language)
# ============================================================
# Public entry points
# ============================================================
def _atomic_write_json(path: str, obj: Any):
tmp = f"{path}.tmp"
with open(tmp, 'w', encoding='utf-8') as f:
json.dump(obj, f, indent=2, ensure_ascii=False)
os.replace(tmp, path)
def translate(method: str, folder: str, target_language: str = '简体中文'):
"""
Translate a single video folder w/ transcript.json.
Writes/updates summary.json and translation.json (time-aligned).
"""
translation_path = os.path.join(folder, 'translation.json')
if os.path.exists(translation_path):
logger.info(f'Translation already exists in {folder}')
return True
info_path = os.path.join(folder, 'download.info.json')
if os.path.exists(info_path):
with open(info_path, 'r', encoding='utf-8') as f:
info_raw = json.load(f)
info = get_necessary_info(info_raw)
else:
info = {
'title': os.path.basename(folder),
'uploader': 'Unknown',
'description': 'Unknown',
'upload_date': 'Unknown',
'tags': []
}
transcript_path = os.path.join(folder, 'transcript.json')
with open(transcript_path, 'r', encoding='utf-8') as f:
transcript = json.load(f)
summary_path = os.path.join(folder, 'summary.json')
if os.path.exists(summary_path):
with open(summary_path, 'r', encoding='utf-8') as f:
summary = json.load(f)
else:
summary = summarize(info, transcript, target_language, method)
_atomic_write_json(summary_path, summary)
translations = _translate(summary, transcript, target_language, method)
# Attach and split
for i, line in enumerate(transcript):
line['translation'] = translations[i]
transcript_split = split_sentences(transcript, target_language=target_language, use_char_based_end=True)
_atomic_write_json(translation_path, transcript_split)
return summary, transcript_split
def translate_all_transcript_under_folder(folder: str, method: str, target_language: str):
"""
Walk directory; translate each subfolder that has transcript.json but not translation.json.
Returns (message, last_summary_json, last_translation_json)
"""
summary_json, translate_json = None, None
for root, dirs, files in os.walk(folder):
if 'transcript.json' in files and 'translation.json' not in files:
summary_json, translate_json = translate(method, root, target_language)
elif 'translation.json' in files:
sum_p = os.path.join(root, 'summary.json')
trn_p = os.path.join(root, 'translation.json')
if os.path.exists(sum_p):
with open(sum_p, 'r', encoding='utf-8') as f:
summary_json = json.load(f)
if os.path.exists(trn_p):
with open(trn_p, 'r', encoding='utf-8') as f:
translate_json = json.load(f)
print(summary_json, translate_json)
return f'Translated all videos under {folder}', summary_json, translate_json
|