# Project EmbodiedGen # # Copyright (c) 2025 Horizon Robotics. All Rights Reserved. # # Licensed under the Apache License, Version 2.0 (the "License"); # you may not use this file except in compliance with the License. # You may obtain a copy of the License at # # http://www.apache.org/licenses/LICENSE-2.0 # # Unless required by applicable law or agreed to in writing, software # distributed under the License is distributed on an "AS IS" BASIS, # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or # implied. See the License for the specific language governing # permissions and limitations under the License. import os import sys from collections import defaultdict import numpy as np import spaces import torch from easydict import EasyDict as edict from tqdm import tqdm current_file_path = os.path.abspath(__file__) current_dir = os.path.dirname(current_file_path) sys.path.append(os.path.join(current_dir, "../..")) from thirdparty.TRELLIS.trellis.renderers import GaussianRenderer, MeshRenderer from thirdparty.TRELLIS.trellis.representations import ( Gaussian, MeshExtractResult, ) from thirdparty.TRELLIS.trellis.utils.render_utils import ( yaw_pitch_r_fov_to_extrinsics_intrinsics, ) __all__ = [ "render_video", "pack_state", "unpack_state", ] @spaces.GPU def render_mesh_frames(sample, extrinsics, intrinsics, options={}, **kwargs): renderer = MeshRenderer() renderer.rendering_options.resolution = options.get("resolution", 512) renderer.rendering_options.near = options.get("near", 1) renderer.rendering_options.far = options.get("far", 100) renderer.rendering_options.ssaa = options.get("ssaa", 4) rets = {} for extr, intr in tqdm(zip(extrinsics, intrinsics), desc="Rendering"): res = renderer.render(sample, extr, intr) if "normal" not in rets: rets["normal"] = [] normal = torch.lerp( torch.zeros_like(res["normal"]), res["normal"], res["mask"] ) normal = np.clip( normal.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255 ).astype(np.uint8) rets["normal"].append(normal) return rets @spaces.GPU def render_gs_frames( sample, extrinsics, intrinsics, options=None, colors_overwrite=None, verbose=True, **kwargs, ): def to_img(tensor): return np.clip( tensor.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255 ).astype(np.uint8) def to_numpy(tensor): return tensor.detach().cpu().numpy() renderer = GaussianRenderer() renderer.pipe.kernel_size = kwargs.get("kernel_size", 0.1) renderer.pipe.use_mip_gaussian = True defaults = { "resolution": 512, "near": 0.8, "far": 1.6, "bg_color": (0, 0, 0), "ssaa": 1, } final_options = {**defaults, **(options or {})} for k, v in final_options.items(): if hasattr(renderer.rendering_options, k): setattr(renderer.rendering_options, k, v) outputs = defaultdict(list) iterator = zip(extrinsics, intrinsics) if verbose: iterator = tqdm(iterator, total=len(extrinsics), desc="Rendering") for extr, intr in iterator: res = renderer.render( sample, extr, intr, colors_overwrite=colors_overwrite ) outputs["color"].append(to_img(res["color"])) depth = res.get("percent_depth") or res.get("depth") outputs["depth"].append(to_numpy(depth) if depth is not None else None) return dict(outputs) @spaces.GPU def render_video( sample, resolution=512, bg_color=(0, 0, 0), num_frames=300, r=2, fov=40, **kwargs, ): yaws = torch.linspace(0, 2 * 3.1415, num_frames) yaws = yaws.tolist() pitch = [0.5] * num_frames extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics( yaws, pitch, r, fov ) render_fn = ( render_mesh_frames if sample.__class__.__name__ == "MeshExtractResult" else render_gs_frames ) result = render_fn( sample, extrinsics, intrinsics, {"resolution": resolution, "bg_color": bg_color}, **kwargs, ) return result @spaces.GPU def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict: return { "gaussian": { **gs.init_params, "_xyz": gs._xyz.cpu().numpy(), "_features_dc": gs._features_dc.cpu().numpy(), "_scaling": gs._scaling.cpu().numpy(), "_rotation": gs._rotation.cpu().numpy(), "_opacity": gs._opacity.cpu().numpy(), }, "mesh": { "vertices": mesh.vertices.cpu().numpy(), "faces": mesh.faces.cpu().numpy(), }, } def unpack_state(state: dict, device: str = "cpu") -> tuple[Gaussian, dict]: gs = Gaussian( aabb=state["gaussian"]["aabb"], sh_degree=state["gaussian"]["sh_degree"], mininum_kernel_size=state["gaussian"]["mininum_kernel_size"], scaling_bias=state["gaussian"]["scaling_bias"], opacity_bias=state["gaussian"]["opacity_bias"], scaling_activation=state["gaussian"]["scaling_activation"], device=device, ) gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device=device) gs._features_dc = torch.tensor( state["gaussian"]["_features_dc"], device=device ) gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device=device) gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device=device) gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device=device) mesh = edict( vertices=torch.tensor(state["mesh"]["vertices"], device=device), faces=torch.tensor(state["mesh"]["faces"], device=device), ) return gs, mesh