Spaces:
Running
on
Zero
Running
on
Zero
File size: 5,851 Bytes
6f668c2 b05f3ac 6f668c2 4f7654a 6f668c2 b05f3ac 4f7654a 6f668c2 4f7654a 6f668c2 b05f3ac 6f668c2 b05f3ac 6f668c2 b05f3ac 6f668c2 4f7654a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 |
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.
import os
import sys
from collections import defaultdict
import numpy as np
import spaces
import torch
from easydict import EasyDict as edict
from tqdm import tqdm
current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
sys.path.append(os.path.join(current_dir, "../.."))
from thirdparty.TRELLIS.trellis.renderers import GaussianRenderer, MeshRenderer
from thirdparty.TRELLIS.trellis.representations import (
Gaussian,
MeshExtractResult,
)
from thirdparty.TRELLIS.trellis.utils.render_utils import (
yaw_pitch_r_fov_to_extrinsics_intrinsics,
)
__all__ = [
"render_video",
"pack_state",
"unpack_state",
]
@spaces.GPU
def render_mesh_frames(sample, extrinsics, intrinsics, options={}, **kwargs):
renderer = MeshRenderer()
renderer.rendering_options.resolution = options.get("resolution", 512)
renderer.rendering_options.near = options.get("near", 1)
renderer.rendering_options.far = options.get("far", 100)
renderer.rendering_options.ssaa = options.get("ssaa", 4)
rets = {}
for extr, intr in tqdm(zip(extrinsics, intrinsics), desc="Rendering"):
res = renderer.render(sample, extr, intr)
if "normal" not in rets:
rets["normal"] = []
normal = torch.lerp(
torch.zeros_like(res["normal"]), res["normal"], res["mask"]
)
normal = np.clip(
normal.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
).astype(np.uint8)
rets["normal"].append(normal)
return rets
@spaces.GPU
def render_gs_frames(
sample,
extrinsics,
intrinsics,
options=None,
colors_overwrite=None,
verbose=True,
**kwargs,
):
def to_img(tensor):
return np.clip(
tensor.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
).astype(np.uint8)
def to_numpy(tensor):
return tensor.detach().cpu().numpy()
renderer = GaussianRenderer()
renderer.pipe.kernel_size = kwargs.get("kernel_size", 0.1)
renderer.pipe.use_mip_gaussian = True
defaults = {
"resolution": 512,
"near": 0.8,
"far": 1.6,
"bg_color": (0, 0, 0),
"ssaa": 1,
}
final_options = {**defaults, **(options or {})}
for k, v in final_options.items():
if hasattr(renderer.rendering_options, k):
setattr(renderer.rendering_options, k, v)
outputs = defaultdict(list)
iterator = zip(extrinsics, intrinsics)
if verbose:
iterator = tqdm(iterator, total=len(extrinsics), desc="Rendering")
for extr, intr in iterator:
res = renderer.render(
sample, extr, intr, colors_overwrite=colors_overwrite
)
outputs["color"].append(to_img(res["color"]))
depth = res.get("percent_depth") or res.get("depth")
outputs["depth"].append(to_numpy(depth) if depth is not None else None)
return dict(outputs)
@spaces.GPU
def render_video(
sample,
resolution=512,
bg_color=(0, 0, 0),
num_frames=300,
r=2,
fov=40,
**kwargs,
):
yaws = torch.linspace(0, 2 * 3.1415, num_frames)
yaws = yaws.tolist()
pitch = [0.5] * num_frames
extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(
yaws, pitch, r, fov
)
render_fn = (
render_mesh_frames
if sample.__class__.__name__ == "MeshExtractResult"
else render_gs_frames
)
result = render_fn(
sample,
extrinsics,
intrinsics,
{"resolution": resolution, "bg_color": bg_color},
**kwargs,
)
return result
@spaces.GPU
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
return {
"gaussian": {
**gs.init_params,
"_xyz": gs._xyz.cpu().numpy(),
"_features_dc": gs._features_dc.cpu().numpy(),
"_scaling": gs._scaling.cpu().numpy(),
"_rotation": gs._rotation.cpu().numpy(),
"_opacity": gs._opacity.cpu().numpy(),
},
"mesh": {
"vertices": mesh.vertices.cpu().numpy(),
"faces": mesh.faces.cpu().numpy(),
},
}
def unpack_state(state: dict, device: str = "cpu") -> tuple[Gaussian, dict]:
gs = Gaussian(
aabb=state["gaussian"]["aabb"],
sh_degree=state["gaussian"]["sh_degree"],
mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
scaling_bias=state["gaussian"]["scaling_bias"],
opacity_bias=state["gaussian"]["opacity_bias"],
scaling_activation=state["gaussian"]["scaling_activation"],
device=device,
)
gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device=device)
gs._features_dc = torch.tensor(
state["gaussian"]["_features_dc"], device=device
)
gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device=device)
gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device=device)
gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device=device)
mesh = edict(
vertices=torch.tensor(state["mesh"]["vertices"], device=device),
faces=torch.tensor(state["mesh"]["faces"], device=device),
)
return gs, mesh
|