File size: 5,851 Bytes
6f668c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05f3ac
6f668c2
 
 
 
4f7654a
6f668c2
 
 
 
 
b05f3ac
4f7654a
 
 
 
6f668c2
 
 
 
 
 
4f7654a
 
6f668c2
 
 
 
b05f3ac
6f668c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05f3ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f668c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
b05f3ac
 
 
6f668c2
 
 
 
 
 
 
 
 
 
4f7654a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
# Project EmbodiedGen
#
# Copyright (c) 2025 Horizon Robotics. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#       http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
# implied. See the License for the specific language governing
# permissions and limitations under the License.

import os
import sys
from collections import defaultdict

import numpy as np
import spaces
import torch
from easydict import EasyDict as edict
from tqdm import tqdm

current_file_path = os.path.abspath(__file__)
current_dir = os.path.dirname(current_file_path)
sys.path.append(os.path.join(current_dir, "../.."))
from thirdparty.TRELLIS.trellis.renderers import GaussianRenderer, MeshRenderer
from thirdparty.TRELLIS.trellis.representations import (
    Gaussian,
    MeshExtractResult,
)
from thirdparty.TRELLIS.trellis.utils.render_utils import (
    yaw_pitch_r_fov_to_extrinsics_intrinsics,
)

__all__ = [
    "render_video",
    "pack_state",
    "unpack_state",
]


@spaces.GPU
def render_mesh_frames(sample, extrinsics, intrinsics, options={}, **kwargs):
    renderer = MeshRenderer()
    renderer.rendering_options.resolution = options.get("resolution", 512)
    renderer.rendering_options.near = options.get("near", 1)
    renderer.rendering_options.far = options.get("far", 100)
    renderer.rendering_options.ssaa = options.get("ssaa", 4)
    rets = {}
    for extr, intr in tqdm(zip(extrinsics, intrinsics), desc="Rendering"):
        res = renderer.render(sample, extr, intr)
        if "normal" not in rets:
            rets["normal"] = []
        normal = torch.lerp(
            torch.zeros_like(res["normal"]), res["normal"], res["mask"]
        )
        normal = np.clip(
            normal.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
        ).astype(np.uint8)
        rets["normal"].append(normal)

    return rets


@spaces.GPU
def render_gs_frames(
    sample,
    extrinsics,
    intrinsics,
    options=None,
    colors_overwrite=None,
    verbose=True,
    **kwargs,
):
    def to_img(tensor):
        return np.clip(
            tensor.detach().cpu().numpy().transpose(1, 2, 0) * 255, 0, 255
        ).astype(np.uint8)

    def to_numpy(tensor):
        return tensor.detach().cpu().numpy()

    renderer = GaussianRenderer()
    renderer.pipe.kernel_size = kwargs.get("kernel_size", 0.1)
    renderer.pipe.use_mip_gaussian = True

    defaults = {
        "resolution": 512,
        "near": 0.8,
        "far": 1.6,
        "bg_color": (0, 0, 0),
        "ssaa": 1,
    }
    final_options = {**defaults, **(options or {})}

    for k, v in final_options.items():
        if hasattr(renderer.rendering_options, k):
            setattr(renderer.rendering_options, k, v)

    outputs = defaultdict(list)
    iterator = zip(extrinsics, intrinsics)
    if verbose:
        iterator = tqdm(iterator, total=len(extrinsics), desc="Rendering")

    for extr, intr in iterator:
        res = renderer.render(
            sample, extr, intr, colors_overwrite=colors_overwrite
        )
        outputs["color"].append(to_img(res["color"]))
        depth = res.get("percent_depth") or res.get("depth")
        outputs["depth"].append(to_numpy(depth) if depth is not None else None)

    return dict(outputs)


@spaces.GPU
def render_video(
    sample,
    resolution=512,
    bg_color=(0, 0, 0),
    num_frames=300,
    r=2,
    fov=40,
    **kwargs,
):
    yaws = torch.linspace(0, 2 * 3.1415, num_frames)
    yaws = yaws.tolist()
    pitch = [0.5] * num_frames
    extrinsics, intrinsics = yaw_pitch_r_fov_to_extrinsics_intrinsics(
        yaws, pitch, r, fov
    )
    render_fn = (
        render_mesh_frames
        if sample.__class__.__name__ == "MeshExtractResult"
        else render_gs_frames
    )
    result = render_fn(
        sample,
        extrinsics,
        intrinsics,
        {"resolution": resolution, "bg_color": bg_color},
        **kwargs,
    )

    return result


@spaces.GPU
def pack_state(gs: Gaussian, mesh: MeshExtractResult) -> dict:
    return {
        "gaussian": {
            **gs.init_params,
            "_xyz": gs._xyz.cpu().numpy(),
            "_features_dc": gs._features_dc.cpu().numpy(),
            "_scaling": gs._scaling.cpu().numpy(),
            "_rotation": gs._rotation.cpu().numpy(),
            "_opacity": gs._opacity.cpu().numpy(),
        },
        "mesh": {
            "vertices": mesh.vertices.cpu().numpy(),
            "faces": mesh.faces.cpu().numpy(),
        },
    }


def unpack_state(state: dict, device: str = "cpu") -> tuple[Gaussian, dict]:
    gs = Gaussian(
        aabb=state["gaussian"]["aabb"],
        sh_degree=state["gaussian"]["sh_degree"],
        mininum_kernel_size=state["gaussian"]["mininum_kernel_size"],
        scaling_bias=state["gaussian"]["scaling_bias"],
        opacity_bias=state["gaussian"]["opacity_bias"],
        scaling_activation=state["gaussian"]["scaling_activation"],
        device=device,
    )
    gs._xyz = torch.tensor(state["gaussian"]["_xyz"], device=device)
    gs._features_dc = torch.tensor(
        state["gaussian"]["_features_dc"], device=device
    )
    gs._scaling = torch.tensor(state["gaussian"]["_scaling"], device=device)
    gs._rotation = torch.tensor(state["gaussian"]["_rotation"], device=device)
    gs._opacity = torch.tensor(state["gaussian"]["_opacity"], device=device)

    mesh = edict(
        vertices=torch.tensor(state["mesh"]["vertices"], device=device),
        faces=torch.tensor(state["mesh"]["faces"], device=device),
    )

    return gs, mesh