Upload app.py
Browse files
app.py
CHANGED
|
@@ -19,18 +19,18 @@ from content import format_error, format_warning, format_log, TITLE, INTRODUCTIO
|
|
| 19 |
TOKEN = os.environ.get("TOKEN", None)
|
| 20 |
|
| 21 |
OWNER="Blanca"
|
| 22 |
-
DATA_DATASET = f"
|
| 23 |
-
INTERNAL_DATA_DATASET = f"
|
| 24 |
-
SUBMISSION_DATASET = f"{
|
| 25 |
-
SUBMISSION_DATASET_PUBLIC = f"
|
| 26 |
-
|
| 27 |
-
RESULTS_DATASET = f"
|
| 28 |
-
LEADERBOARD_PATH = f"
|
| 29 |
api = HfApi()
|
| 30 |
|
| 31 |
-
YEAR_VERSION = "
|
| 32 |
-
ref_scores_len = {"test":
|
| 33 |
-
ref_level_len = {"test": {1: 93, 2: 159, 3: 49}}
|
| 34 |
|
| 35 |
os.makedirs("scored", exist_ok=True)
|
| 36 |
|
|
@@ -39,33 +39,29 @@ LOCAL_DEBUG = False #not (os.environ.get("system") == "spaces")
|
|
| 39 |
|
| 40 |
# Display the results
|
| 41 |
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
|
| 42 |
-
|
| 43 |
def get_dataframe_from_results(eval_results, split):
|
| 44 |
local_df = eval_results[split]
|
| 45 |
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
|
| 46 |
local_df = local_df.remove_columns(["system_prompt", "url"])
|
| 47 |
local_df = local_df.rename_column("model", "Agent name")
|
| 48 |
local_df = local_df.rename_column("model_family", "Model family")
|
| 49 |
-
local_df = local_df.rename_column("score", "
|
| 50 |
-
for i in [1, 2, 3]:
|
| 51 |
-
local_df = local_df.rename_column(f"score_level{i}", f"Level {i} score (%)")
|
| 52 |
local_df = local_df.rename_column("date", "Submission date")
|
| 53 |
df = pd.DataFrame(local_df)
|
| 54 |
-
df = df.sort_values(by=["
|
| 55 |
|
| 56 |
-
|
| 57 |
-
df[numeric_cols] = df[numeric_cols].multiply(100).round(decimals=2)
|
| 58 |
-
#df = df.style.format("{:.2%}", subset=numeric_cols)
|
| 59 |
|
| 60 |
return df
|
| 61 |
|
| 62 |
-
|
| 63 |
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
| 64 |
|
| 65 |
# Gold answers
|
| 66 |
gold_results = {}
|
| 67 |
-
gold_dataset = load_dataset(INTERNAL_DATA_DATASET,
|
| 68 |
-
gold_results = {
|
| 69 |
|
| 70 |
|
| 71 |
def restart_space():
|
|
@@ -88,16 +84,16 @@ def add_new_eval(
|
|
| 88 |
user_data = requests.get(f"https://huggingface.co/api/users/{profile.username}/overview")
|
| 89 |
creation_date = json.loads(user_data.content)["createdAt"]
|
| 90 |
if datetime.datetime.now() - datetime.datetime.strptime(creation_date, '%Y-%m-%dT%H:%M:%S.%fZ') < datetime.timedelta(days=60):
|
| 91 |
-
return format_error("This account is not authorized to submit on
|
| 92 |
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
|
| 99 |
|
| 100 |
-
|
| 101 |
# Very basic email parsing
|
| 102 |
_, parsed_mail = parseaddr(mail)
|
| 103 |
if not "@" in parsed_mail:
|
|
@@ -134,17 +130,18 @@ def add_new_eval(
|
|
| 134 |
"mail": mail,
|
| 135 |
"date": datetime.datetime.today().strftime('%Y-%m-%d')
|
| 136 |
}
|
| 137 |
-
|
| 138 |
if LOCAL_DEBUG:
|
| 139 |
print("mock uploaded contact info")
|
| 140 |
-
|
| 141 |
-
|
| 142 |
|
| 143 |
# SCORE SUBMISSION
|
| 144 |
file_path = path_to_file.name
|
| 145 |
-
scores =
|
| 146 |
-
num_questions =
|
| 147 |
task_ids = []
|
|
|
|
| 148 |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
| 149 |
with open(file_path, 'r') as f:
|
| 150 |
for ix, line in enumerate(f):
|
|
@@ -152,39 +149,35 @@ def add_new_eval(
|
|
| 152 |
task = json.loads(line)
|
| 153 |
except Exception:
|
| 154 |
return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
|
| 155 |
-
|
| 156 |
if "model_answer" not in task:
|
| 157 |
-
return format_error(f"Line {ix}
|
| 158 |
answer = task["model_answer"]
|
| 159 |
task_id = task["task_id"]
|
| 160 |
-
try:
|
| 161 |
-
level = int(gold_results[val_or_test][task_id]["Level"])
|
| 162 |
-
except KeyError:
|
| 163 |
-
return format_error(f"{task_id} not found in split {val_or_test}. Are you sure you submitted the correct file?")
|
| 164 |
|
| 165 |
-
|
| 166 |
-
|
|
|
|
|
|
|
|
|
|
| 167 |
scored_file.write(
|
| 168 |
json.dumps({
|
| 169 |
"id": task_id,
|
| 170 |
"model_answer": answer,
|
| 171 |
-
"score": score
|
| 172 |
-
"level": level
|
| 173 |
}) + "\n"
|
| 174 |
)
|
|
|
|
| 175 |
task_ids.append(task_id)
|
|
|
|
|
|
|
| 176 |
|
| 177 |
-
scores["all"] += score
|
| 178 |
-
scores[level] += score
|
| 179 |
-
num_questions["all"] += 1
|
| 180 |
-
num_questions[level] += 1
|
| 181 |
|
| 182 |
# Check if there's any duplicate in the submission
|
| 183 |
if len(task_ids) != len(set(task_ids)):
|
| 184 |
return format_error("There are duplicates in your submission. Please check your file and resubmit it.")
|
| 185 |
|
| 186 |
-
if any([num_questions[level] != ref_level_len[val_or_test][level] for level in [1, 2, 3]]):
|
| 187 |
-
|
| 188 |
|
| 189 |
# SAVE SCORED SUBMISSION
|
| 190 |
if LOCAL_DEBUG:
|
|
@@ -215,14 +208,14 @@ def add_new_eval(
|
|
| 215 |
"system_prompt": system_prompt,
|
| 216 |
"url": url,
|
| 217 |
"organisation": organisation,
|
| 218 |
-
"score": scores
|
| 219 |
-
"score_level1": scores[1]/num_questions[1],
|
| 220 |
-
"score_level2": scores[2]/num_questions[2],
|
| 221 |
-
"score_level3": scores[3]/num_questions[3],
|
| 222 |
"date": datetime.datetime.today().strftime('%Y-%m-%d')
|
| 223 |
}
|
| 224 |
if num_questions[1] + num_questions[2] + num_questions[3] != ref_scores_len[val_or_test]:
|
| 225 |
-
return format_error(f"Your submission has {len(scores['all'])} questions for the
|
| 226 |
# Catching spam submissions of 100%
|
| 227 |
if all((eval_entry[k] == 1 for k in ["score_level1", "score_level2", "score_level3"])):
|
| 228 |
return format_error(f"There was a problem with your submission. Please open a discussion.")
|
|
@@ -246,10 +239,10 @@ def add_new_eval(
|
|
| 246 |
|
| 247 |
def refresh():
|
| 248 |
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS,trust_remote_code=True)
|
| 249 |
-
#eval_dataframe_val = get_dataframe_from_results(eval_results=eval_results, split="validation")
|
| 250 |
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
| 251 |
return eval_dataframe_test
|
| 252 |
|
|
|
|
| 253 |
def upload_file(files):
|
| 254 |
file_paths = [file.name for file in files]
|
| 255 |
return file_paths
|
|
@@ -273,21 +266,15 @@ with demo:
|
|
| 273 |
value=eval_dataframe_test, datatype=TYPES, interactive=False,
|
| 274 |
column_widths=["20%"]
|
| 275 |
)
|
| 276 |
-
with gr.Tab("Results: Validation"):
|
| 277 |
-
|
| 278 |
-
|
| 279 |
-
|
| 280 |
-
|
| 281 |
|
| 282 |
refresh_button = gr.Button("Refresh")
|
| 283 |
-
refresh_button.click(
|
| 284 |
-
|
| 285 |
-
inputs=[],
|
| 286 |
-
outputs=[
|
| 287 |
-
leaderboard_table_val,
|
| 288 |
-
leaderboard_table_test,
|
| 289 |
-
],
|
| 290 |
-
)
|
| 291 |
with gr.Accordion("Submit a new model for evaluation"):
|
| 292 |
with gr.Row():
|
| 293 |
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
|
|
@@ -326,4 +313,4 @@ with demo:
|
|
| 326 |
scheduler = BackgroundScheduler()
|
| 327 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 328 |
scheduler.start()
|
| 329 |
-
demo.launch(debug=True)
|
|
|
|
| 19 |
TOKEN = os.environ.get("TOKEN", None)
|
| 20 |
|
| 21 |
OWNER="Blanca"
|
| 22 |
+
DATA_DATASET = f"{OWNER}/critical_questions_generation"
|
| 23 |
+
INTERNAL_DATA_DATASET = f"{OWNER}/critical_questions_generation"
|
| 24 |
+
SUBMISSION_DATASET = f"{OWNER}/submissions_internal"
|
| 25 |
+
SUBMISSION_DATASET_PUBLIC = f"{OWNER}/submissions_public"
|
| 26 |
+
CONTACT_DATASET = f"{OWNER}/contact_info"
|
| 27 |
+
RESULTS_DATASET = f"{OWNER}/results_public"
|
| 28 |
+
LEADERBOARD_PATH = f"HiTZ/Critical_Questions_Leaderboard"
|
| 29 |
api = HfApi()
|
| 30 |
|
| 31 |
+
YEAR_VERSION = "2025"
|
| 32 |
+
ref_scores_len = {"test": 34}
|
| 33 |
+
#ref_level_len = {"validation": {1: 53, 2: 86, 3: 26}, "test": {1: 93, 2: 159, 3: 49}}
|
| 34 |
|
| 35 |
os.makedirs("scored", exist_ok=True)
|
| 36 |
|
|
|
|
| 39 |
|
| 40 |
# Display the results
|
| 41 |
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
|
| 42 |
+
contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
|
| 43 |
def get_dataframe_from_results(eval_results, split):
|
| 44 |
local_df = eval_results[split]
|
| 45 |
local_df = local_df.map(lambda row: {"model": model_hyperlink(row["url"], row["model"])})
|
| 46 |
local_df = local_df.remove_columns(["system_prompt", "url"])
|
| 47 |
local_df = local_df.rename_column("model", "Agent name")
|
| 48 |
local_df = local_df.rename_column("model_family", "Model family")
|
| 49 |
+
local_df = local_df.rename_column("score", "Score (%)")
|
|
|
|
|
|
|
| 50 |
local_df = local_df.rename_column("date", "Submission date")
|
| 51 |
df = pd.DataFrame(local_df)
|
| 52 |
+
df = df.sort_values(by=["Score (%)"], ascending=False)
|
| 53 |
|
| 54 |
+
df["Score (%)"] = df["Score (%)"].multiply(100).round(2)
|
|
|
|
|
|
|
| 55 |
|
| 56 |
return df
|
| 57 |
|
| 58 |
+
|
| 59 |
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
| 60 |
|
| 61 |
# Gold answers
|
| 62 |
gold_results = {}
|
| 63 |
+
gold_dataset = load_dataset(INTERNAL_DATA_DATASET, token=TOKEN, trust_remote_code=True)
|
| 64 |
+
gold_results = {"test": {row["intervention_id"]: row for row in gold_dataset["test"]}}
|
| 65 |
|
| 66 |
|
| 67 |
def restart_space():
|
|
|
|
| 84 |
user_data = requests.get(f"https://huggingface.co/api/users/{profile.username}/overview")
|
| 85 |
creation_date = json.loads(user_data.content)["createdAt"]
|
| 86 |
if datetime.datetime.now() - datetime.datetime.strptime(creation_date, '%Y-%m-%dT%H:%M:%S.%fZ') < datetime.timedelta(days=60):
|
| 87 |
+
return format_error("This account is not authorized to submit on this leaderboard.")
|
| 88 |
|
| 89 |
|
| 90 |
+
contact_infos = load_dataset(CONTACT_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS, trust_remote_code=True)
|
| 91 |
+
user_submission_dates = sorted(row["date"] for row in contact_infos[val_or_test] if row["username"] == profile.username)
|
| 92 |
+
if len(user_submission_dates) > 0 and user_submission_dates[-1] == datetime.datetime.today().strftime('%Y-%m-%d'):
|
| 93 |
+
return format_error("You already submitted once today, please try again tomorrow.")
|
| 94 |
|
| 95 |
|
| 96 |
+
is_validation = val_or_test == "validation"
|
| 97 |
# Very basic email parsing
|
| 98 |
_, parsed_mail = parseaddr(mail)
|
| 99 |
if not "@" in parsed_mail:
|
|
|
|
| 130 |
"mail": mail,
|
| 131 |
"date": datetime.datetime.today().strftime('%Y-%m-%d')
|
| 132 |
}
|
| 133 |
+
contact_infos[val_or_test]= contact_infos[val_or_test].add_item(contact_info)
|
| 134 |
if LOCAL_DEBUG:
|
| 135 |
print("mock uploaded contact info")
|
| 136 |
+
else:
|
| 137 |
+
contact_infos.push_to_hub(CONTACT_DATASET, config_name = YEAR_VERSION, token=TOKEN)
|
| 138 |
|
| 139 |
# SCORE SUBMISSION
|
| 140 |
file_path = path_to_file.name
|
| 141 |
+
scores = 0
|
| 142 |
+
num_questions = 0
|
| 143 |
task_ids = []
|
| 144 |
+
|
| 145 |
with open(f"scored/{organisation}_{model}.jsonl", "w") as scored_file:
|
| 146 |
with open(file_path, 'r') as f:
|
| 147 |
for ix, line in enumerate(f):
|
|
|
|
| 149 |
task = json.loads(line)
|
| 150 |
except Exception:
|
| 151 |
return format_error(f"Line {ix} is incorrectly formatted. Please fix it and resubmit your file.")
|
|
|
|
| 152 |
if "model_answer" not in task:
|
| 153 |
+
return format_error(f"Line {ix} missing 'model_answer'.")
|
| 154 |
answer = task["model_answer"]
|
| 155 |
task_id = task["task_id"]
|
|
|
|
|
|
|
|
|
|
|
|
|
| 156 |
|
| 157 |
+
if task_id not in gold_results[val_or_test]:
|
| 158 |
+
return format_error(f"{task_id} not found in gold set.")
|
| 159 |
+
|
| 160 |
+
score = question_scorer(answer, gold_results[val_or_test][task_id]["Final answer"])
|
| 161 |
+
|
| 162 |
scored_file.write(
|
| 163 |
json.dumps({
|
| 164 |
"id": task_id,
|
| 165 |
"model_answer": answer,
|
| 166 |
+
"score": score
|
|
|
|
| 167 |
}) + "\n"
|
| 168 |
)
|
| 169 |
+
|
| 170 |
task_ids.append(task_id)
|
| 171 |
+
scores += score
|
| 172 |
+
num_questions += 1
|
| 173 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 174 |
|
| 175 |
# Check if there's any duplicate in the submission
|
| 176 |
if len(task_ids) != len(set(task_ids)):
|
| 177 |
return format_error("There are duplicates in your submission. Please check your file and resubmit it.")
|
| 178 |
|
| 179 |
+
#if any([num_questions[level] != ref_level_len[val_or_test][level] for level in [1, 2, 3]]):
|
| 180 |
+
# return format_error(f"Your submission has {num_questions[1]} questions for level 1, {num_questions[2]} for level 2, and {num_questions[3]} for level 3, but it should have {ref_level_len[val_or_test][1]}, {ref_level_len[val_or_test][2]}, and {ref_level_len[val_or_test][3]} respectively. Please check your submission.")
|
| 181 |
|
| 182 |
# SAVE SCORED SUBMISSION
|
| 183 |
if LOCAL_DEBUG:
|
|
|
|
| 208 |
"system_prompt": system_prompt,
|
| 209 |
"url": url,
|
| 210 |
"organisation": organisation,
|
| 211 |
+
"score": scores / ref_scores_len,#[val_or_test],
|
| 212 |
+
#"score_level1": scores[1]/num_questions[1],
|
| 213 |
+
#"score_level2": scores[2]/num_questions[2],
|
| 214 |
+
#"score_level3": scores[3]/num_questions[3],
|
| 215 |
"date": datetime.datetime.today().strftime('%Y-%m-%d')
|
| 216 |
}
|
| 217 |
if num_questions[1] + num_questions[2] + num_questions[3] != ref_scores_len[val_or_test]:
|
| 218 |
+
return format_error(f"Your submission has {len(scores['all'])} questions for the {val_or_test} set, but it should have {ref_scores_len[val_or_test]}. Please check your submission.")
|
| 219 |
# Catching spam submissions of 100%
|
| 220 |
if all((eval_entry[k] == 1 for k in ["score_level1", "score_level2", "score_level3"])):
|
| 221 |
return format_error(f"There was a problem with your submission. Please open a discussion.")
|
|
|
|
| 239 |
|
| 240 |
def refresh():
|
| 241 |
eval_results = load_dataset(RESULTS_DATASET, YEAR_VERSION, token=TOKEN, download_mode="force_redownload", verification_mode=VerificationMode.NO_CHECKS,trust_remote_code=True)
|
|
|
|
| 242 |
eval_dataframe_test = get_dataframe_from_results(eval_results=eval_results, split="test")
|
| 243 |
return eval_dataframe_test
|
| 244 |
|
| 245 |
+
|
| 246 |
def upload_file(files):
|
| 247 |
file_paths = [file.name for file in files]
|
| 248 |
return file_paths
|
|
|
|
| 266 |
value=eval_dataframe_test, datatype=TYPES, interactive=False,
|
| 267 |
column_widths=["20%"]
|
| 268 |
)
|
| 269 |
+
#with gr.Tab("Results: Validation"):
|
| 270 |
+
# leaderboard_table_val = gr.components.Dataframe(
|
| 271 |
+
# value=eval_dataframe_val, datatype=TYPES, interactive=False,
|
| 272 |
+
# column_widths=["20%"]
|
| 273 |
+
# )
|
| 274 |
|
| 275 |
refresh_button = gr.Button("Refresh")
|
| 276 |
+
refresh_button.click(refresh, inputs=[], outputs=[leaderboard_table_test])
|
| 277 |
+
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
with gr.Accordion("Submit a new model for evaluation"):
|
| 279 |
with gr.Row():
|
| 280 |
gr.Markdown(SUBMISSION_TEXT, elem_classes="markdown-text")
|
|
|
|
| 313 |
scheduler = BackgroundScheduler()
|
| 314 |
scheduler.add_job(restart_space, "interval", seconds=3600)
|
| 315 |
scheduler.start()
|
| 316 |
+
demo.launch(debug=True)
|