Blanca commited on
Commit
0a759e0
·
verified ·
1 Parent(s): d013646

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +19 -17
app.py CHANGED
@@ -29,6 +29,7 @@ SUBMISSION_DATASET_PUBLIC = f"{OWNER}/submissions_public"
29
  #CONTACT_DATASET = f"{OWNER}/contact_info"
30
  RESULTS_DATASET = f"{OWNER}/results_public"
31
  LEADERBOARD_PATH = f"HiTZ/Critical_Questions_Leaderboard"
 
32
  api = HfApi()
33
 
34
  YEAR_VERSION = "2025"
@@ -162,28 +163,29 @@ def add_new_eval(
162
  if id_to_eval == intervention_id:
163
  references = gold_dataset['cqs']
164
  reference_set = [row['cq'] for row in references[indx]]
165
- print(reference_set, flush=True)
166
  for cq in line['cqs']:
167
  # TODO: compare to each reference and get a value
168
  cq_text = cq['cq']
169
- print(cq_text, flush=True)
170
-
171
- #if args.metric == 'similarity':
172
- sentence_embedding = similarity_model.encode(cq_text)
173
- reference_embedding = similarity_model.encode(reference_set)
174
- sims = similarity_model.similarity(sentence_embedding, reference_embedding).tolist()[0]
175
- print(sims, flush=True)
176
-
177
- winner = np.argmax(sims)
178
- # make sure the similarity of the winning reference sentence is at least 0.65
179
- if sims[winner] > 0.65:
180
- label = references[indx][winner]['label']
181
- if label == 'Useful':
182
- score += 1/3
 
183
  #else:
184
  # label = 'not_able_to_evaluate'
185
-
186
- return format_error(score)
187
 
188
 
189
 
 
29
  #CONTACT_DATASET = f"{OWNER}/contact_info"
30
  RESULTS_DATASET = f"{OWNER}/results_public"
31
  LEADERBOARD_PATH = f"HiTZ/Critical_Questions_Leaderboard"
32
+ METRIC = 'similarity'
33
  api = HfApi()
34
 
35
  YEAR_VERSION = "2025"
 
163
  if id_to_eval == intervention_id:
164
  references = gold_dataset['cqs']
165
  reference_set = [row['cq'] for row in references[indx]]
166
+ #print(reference_set, flush=True)
167
  for cq in line['cqs']:
168
  # TODO: compare to each reference and get a value
169
  cq_text = cq['cq']
170
+ #print(cq_text, flush=True)
171
+
172
+
173
+ if METRIC == 'similarity':
174
+ sentence_embedding = similarity_model.encode(cq_text)
175
+ reference_embedding = similarity_model.encode(reference_set)
176
+ sims = similarity_model.similarity(sentence_embedding, reference_embedding).tolist()[0]
177
+ #print(sims, flush=True)
178
+
179
+ winner = np.argmax(sims)
180
+ # make sure the similarity of the winning reference sentence is at least 0.65
181
+ if sims[winner] > 0.65:
182
+ label = references[indx][winner]['label']
183
+ if label == 'Useful':
184
+ score += 1/3
185
  #else:
186
  # label = 'not_able_to_evaluate'
187
+ print(indx, score, flush=True)
188
+ #return format_error(score)
189
 
190
 
191