Spaces:
Sleeping
Sleeping
Update evo_transformer.py
Browse files- evo_transformer.py +35 -8
evo_transformer.py
CHANGED
|
@@ -1,9 +1,8 @@
|
|
| 1 |
-
# evo_transformer.py
|
| 2 |
import random
|
|
|
|
| 3 |
|
| 4 |
class EvoTransformer:
|
| 5 |
def __init__(self, config=None):
|
| 6 |
-
# Initialize with default or passed config
|
| 7 |
self.config = config or {
|
| 8 |
"layers": 4,
|
| 9 |
"attention_heads": 4,
|
|
@@ -16,7 +15,7 @@ class EvoTransformer:
|
|
| 16 |
def mutate(self):
|
| 17 |
new_config = self.config.copy()
|
| 18 |
trait = random.choice(list(new_config.keys()))
|
| 19 |
-
|
| 20 |
if trait == "layers":
|
| 21 |
new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1]))
|
| 22 |
elif trait == "attention_heads":
|
|
@@ -31,7 +30,7 @@ class EvoTransformer:
|
|
| 31 |
self.config = new_config
|
| 32 |
self.history.append(new_config.copy())
|
| 33 |
|
| 34 |
-
def evolve(self, generations=
|
| 35 |
for _ in range(generations):
|
| 36 |
self.mutate()
|
| 37 |
|
|
@@ -39,10 +38,38 @@ class EvoTransformer:
|
|
| 39 |
return self.history
|
| 40 |
|
| 41 |
def evaluate(self):
|
| 42 |
-
#
|
| 43 |
score = round(random.uniform(0.85, 0.95), 4)
|
| 44 |
-
return {
|
|
|
|
|
|
|
|
|
|
| 45 |
|
| 46 |
def estimate_params(self):
|
| 47 |
-
|
| 48 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import random
|
| 2 |
+
import matplotlib.pyplot as plt
|
| 3 |
|
| 4 |
class EvoTransformer:
|
| 5 |
def __init__(self, config=None):
|
|
|
|
| 6 |
self.config = config or {
|
| 7 |
"layers": 4,
|
| 8 |
"attention_heads": 4,
|
|
|
|
| 15 |
def mutate(self):
|
| 16 |
new_config = self.config.copy()
|
| 17 |
trait = random.choice(list(new_config.keys()))
|
| 18 |
+
|
| 19 |
if trait == "layers":
|
| 20 |
new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1]))
|
| 21 |
elif trait == "attention_heads":
|
|
|
|
| 30 |
self.config = new_config
|
| 31 |
self.history.append(new_config.copy())
|
| 32 |
|
| 33 |
+
def evolve(self, generations=5):
|
| 34 |
for _ in range(generations):
|
| 35 |
self.mutate()
|
| 36 |
|
|
|
|
| 38 |
return self.history
|
| 39 |
|
| 40 |
def evaluate(self):
|
| 41 |
+
# Simulated accuracy for demo
|
| 42 |
score = round(random.uniform(0.85, 0.95), 4)
|
| 43 |
+
return {
|
| 44 |
+
"accuracy": score,
|
| 45 |
+
"params": self.estimate_params()
|
| 46 |
+
}
|
| 47 |
|
| 48 |
def estimate_params(self):
|
| 49 |
+
return round(10 + self.config["layers"] * self.config["ffn_dim"] * 0.001, 2)
|
| 50 |
+
|
| 51 |
+
def plot_evolution(self):
|
| 52 |
+
layers = [cfg["layers"] for cfg in self.history]
|
| 53 |
+
heads = [cfg["attention_heads"] for cfg in self.history]
|
| 54 |
+
ffn_dims = [cfg["ffn_dim"] for cfg in self.history]
|
| 55 |
+
|
| 56 |
+
plt.figure(figsize=(10, 6))
|
| 57 |
+
plt.plot(layers, label="Layers", marker='o', color='orange')
|
| 58 |
+
plt.plot(heads, label="Attention Heads", marker='s', color='blue')
|
| 59 |
+
plt.plot(ffn_dims, label="FFN Dim", marker='^', color='green')
|
| 60 |
+
plt.xlabel("Generation")
|
| 61 |
+
plt.ylabel("Value")
|
| 62 |
+
plt.title("Evolution of Traits")
|
| 63 |
+
plt.legend()
|
| 64 |
+
plt.grid(True)
|
| 65 |
+
plt.tight_layout()
|
| 66 |
+
plt.show()
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
# Run test locally
|
| 70 |
+
if __name__ == "__main__":
|
| 71 |
+
evo = EvoTransformer()
|
| 72 |
+
evo.evolve(generations=8)
|
| 73 |
+
evo.plot_evolution()
|
| 74 |
+
print("Final Config:", evo.config)
|
| 75 |
+
print("Evaluation:", evo.evaluate())
|