Spaces:
Sleeping
Sleeping
Update evo_transformer.py
Browse files- evo_transformer.py +7 -14
evo_transformer.py
CHANGED
|
@@ -1,16 +1,20 @@
|
|
| 1 |
# evo_transformer.py
|
| 2 |
import random
|
| 3 |
-
import json
|
| 4 |
|
| 5 |
class EvoTransformer:
|
| 6 |
def __init__(self, config=None):
|
| 7 |
-
self.
|
| 8 |
"layers": 4,
|
| 9 |
"attention_heads": 4,
|
| 10 |
"ffn_dim": 1024,
|
| 11 |
"dropout": 0.1,
|
| 12 |
"memory": False,
|
| 13 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
self.history = [self.config.copy()]
|
| 15 |
|
| 16 |
def mutate(self):
|
|
@@ -43,15 +47,4 @@ class EvoTransformer:
|
|
| 43 |
return {"accuracy": score, "params": self.estimate_params()}
|
| 44 |
|
| 45 |
def estimate_params(self):
|
| 46 |
-
return round(self.config["layers"] * self.config["ffn_dim"] * 0
|
| 47 |
-
|
| 48 |
-
def save_history(self):
|
| 49 |
-
csv_path = "evo_history.csv"
|
| 50 |
-
json_path = "evo_history.json"
|
| 51 |
-
with open(csv_path, "w") as f:
|
| 52 |
-
f.write("generation,layers,attention_heads,ffn_dim,dropout,memory\n")
|
| 53 |
-
for i, cfg in enumerate(self.history):
|
| 54 |
-
f.write(f"{i+1},{cfg['layers']},{cfg['attention_heads']},{cfg['ffn_dim']},{cfg['dropout']},{cfg['memory']}\n")
|
| 55 |
-
with open(json_path, "w") as f:
|
| 56 |
-
json.dump(self.history, f, indent=2)
|
| 57 |
-
return csv_path, json_path
|
|
|
|
| 1 |
# evo_transformer.py
|
| 2 |
import random
|
|
|
|
| 3 |
|
| 4 |
class EvoTransformer:
|
| 5 |
def __init__(self, config=None):
|
| 6 |
+
self.default_config = {
|
| 7 |
"layers": 4,
|
| 8 |
"attention_heads": 4,
|
| 9 |
"ffn_dim": 1024,
|
| 10 |
"dropout": 0.1,
|
| 11 |
"memory": False,
|
| 12 |
}
|
| 13 |
+
self.config = config or self.default_config.copy()
|
| 14 |
+
self.history = [self.config.copy()]
|
| 15 |
+
|
| 16 |
+
def reset(self):
|
| 17 |
+
self.config = self.default_config.copy()
|
| 18 |
self.history = [self.config.copy()]
|
| 19 |
|
| 20 |
def mutate(self):
|
|
|
|
| 47 |
return {"accuracy": score, "params": self.estimate_params()}
|
| 48 |
|
| 49 |
def estimate_params(self):
|
| 50 |
+
return round(10 + self.config["layers"] * self.config["ffn_dim"] * 1.0, 2)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|