Spaces:
Sleeping
Sleeping
| # evo_transformer.py | |
| import random | |
| class EvoTransformer: | |
| def __init__(self, config=None): | |
| # Initialize with default or passed config | |
| self.config = config or { | |
| "layers": 4, | |
| "attention_heads": 4, | |
| "ffn_dim": 1024, | |
| "dropout": 0.1, | |
| "memory": False, | |
| } | |
| self.history = [self.config.copy()] | |
| def mutate(self): | |
| new_config = self.config.copy() | |
| trait = random.choice(list(new_config.keys())) | |
| if trait == "layers": | |
| new_config[trait] = max(1, new_config[trait] + random.choice([-1, 1])) | |
| elif trait == "attention_heads": | |
| new_config[trait] = random.choice([2, 4, 6, 8]) | |
| elif trait == "ffn_dim": | |
| new_config[trait] = random.choice([512, 1024, 2048]) | |
| elif trait == "dropout": | |
| new_config[trait] = round(min(max(0.0, new_config[trait] + random.uniform(-0.05, 0.05)), 0.5), 2) | |
| elif trait == "memory": | |
| new_config[trait] = not new_config[trait] | |
| self.config = new_config | |
| self.history.append(new_config.copy()) | |
| def evolve(self, generations=3): | |
| for _ in range(generations): | |
| self.mutate() | |
| def get_history(self): | |
| return self.history | |
| def evaluate(self): | |
| # Simulate an accuracy score for demo purposes | |
| score = round(random.uniform(0.85, 0.95), 4) | |
| return {"accuracy": score, "params": self.estimate_params()} | |
| def estimate_params(self): | |
| # Simulated parameter count based on config | |
| return 10 + self.config["layers"] * self.config["ffn_dim"] * 0.001 | |