Spaces:
Sleeping
Sleeping
Update inference.py
Browse files- inference.py +9 -8
inference.py
CHANGED
|
@@ -10,8 +10,6 @@ import psutil
|
|
| 10 |
import platform
|
| 11 |
import GPUtil
|
| 12 |
import openai
|
| 13 |
-
import GPUtil
|
| 14 |
-
|
| 15 |
|
| 16 |
# Load tokenizer
|
| 17 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
@@ -45,12 +43,14 @@ def evo_chat_predict(history, question, options):
|
|
| 45 |
|
| 46 |
def get_gpt_response(prompt):
|
| 47 |
openai.api_key = os.getenv("OPENAI_API_KEY", "sk-...")
|
|
|
|
| 48 |
try:
|
| 49 |
-
|
|
|
|
| 50 |
model="gpt-3.5-turbo",
|
| 51 |
messages=[{"role": "user", "content": prompt}]
|
| 52 |
)
|
| 53 |
-
return
|
| 54 |
except Exception as e:
|
| 55 |
return f"(GPT Error) {e}"
|
| 56 |
|
|
@@ -94,8 +94,9 @@ def retrain_from_feedback_csv():
|
|
| 94 |
with open(FEEDBACK_LOG, "r", encoding="utf-8") as f:
|
| 95 |
reader = csv.DictReader(f)
|
| 96 |
for row in reader:
|
| 97 |
-
|
| 98 |
-
|
|
|
|
| 99 |
input_text = f"{row['question']} {row['option1']} {row['option2']}"
|
| 100 |
data.append((input_text, label))
|
| 101 |
|
|
@@ -114,17 +115,17 @@ def retrain_from_feedback_csv():
|
|
| 114 |
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
| 115 |
for epoch in range(3):
|
| 116 |
random.shuffle(data)
|
| 117 |
-
total_loss = 0.0
|
| 118 |
for text, label in data:
|
| 119 |
enc = tokenizer(text, padding="max_length", truncation=True, max_length=128, return_tensors="pt").to(device)
|
| 120 |
input_ids = enc["input_ids"]
|
| 121 |
label_tensor = torch.tensor([label], dtype=torch.float32).to(device)
|
| 122 |
logits = model(input_ids)
|
|
|
|
|
|
|
| 123 |
loss = F.binary_cross_entropy_with_logits(logits.squeeze(), label_tensor)
|
| 124 |
optimizer.zero_grad()
|
| 125 |
loss.backward()
|
| 126 |
optimizer.step()
|
| 127 |
-
total_loss += loss.item()
|
| 128 |
model.eval()
|
| 129 |
return f"✅ Evo retrained on {len(data)} feedback entries."
|
| 130 |
|
|
|
|
| 10 |
import platform
|
| 11 |
import GPUtil
|
| 12 |
import openai
|
|
|
|
|
|
|
| 13 |
|
| 14 |
# Load tokenizer
|
| 15 |
tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
|
|
|
| 43 |
|
| 44 |
def get_gpt_response(prompt):
|
| 45 |
openai.api_key = os.getenv("OPENAI_API_KEY", "sk-...")
|
| 46 |
+
|
| 47 |
try:
|
| 48 |
+
client = openai.OpenAI()
|
| 49 |
+
response = client.chat.completions.create(
|
| 50 |
model="gpt-3.5-turbo",
|
| 51 |
messages=[{"role": "user", "content": prompt}]
|
| 52 |
)
|
| 53 |
+
return response.choices[0].message.content.strip()
|
| 54 |
except Exception as e:
|
| 55 |
return f"(GPT Error) {e}"
|
| 56 |
|
|
|
|
| 94 |
with open(FEEDBACK_LOG, "r", encoding="utf-8") as f:
|
| 95 |
reader = csv.DictReader(f)
|
| 96 |
for row in reader:
|
| 97 |
+
vote = row.get("user_preference") or row.get("vote")
|
| 98 |
+
if vote in ["Evo", "GPT"]:
|
| 99 |
+
label = 1 if vote == "Evo" else 0
|
| 100 |
input_text = f"{row['question']} {row['option1']} {row['option2']}"
|
| 101 |
data.append((input_text, label))
|
| 102 |
|
|
|
|
| 115 |
optimizer = torch.optim.Adam(model.parameters(), lr=1e-4)
|
| 116 |
for epoch in range(3):
|
| 117 |
random.shuffle(data)
|
|
|
|
| 118 |
for text, label in data:
|
| 119 |
enc = tokenizer(text, padding="max_length", truncation=True, max_length=128, return_tensors="pt").to(device)
|
| 120 |
input_ids = enc["input_ids"]
|
| 121 |
label_tensor = torch.tensor([label], dtype=torch.float32).to(device)
|
| 122 |
logits = model(input_ids)
|
| 123 |
+
if logits.ndim == 2:
|
| 124 |
+
logits = logits.squeeze(1)
|
| 125 |
loss = F.binary_cross_entropy_with_logits(logits.squeeze(), label_tensor)
|
| 126 |
optimizer.zero_grad()
|
| 127 |
loss.backward()
|
| 128 |
optimizer.step()
|
|
|
|
| 129 |
model.eval()
|
| 130 |
return f"✅ Evo retrained on {len(data)} feedback entries."
|
| 131 |
|