Spaces:
Sleeping
Sleeping
| # evo_model.py | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| class EvoEncoder(nn.Module): | |
| def __init__(self, d_model=512, num_heads=8, ffn_dim=1024, num_layers=6, memory_enabled=True): | |
| super().__init__() | |
| self.embedding = nn.Embedding(30522, d_model) | |
| self.memory_enabled = memory_enabled | |
| if memory_enabled: | |
| self.memory_proj = nn.Linear(d_model, d_model) | |
| self.memory_token = nn.Parameter(torch.zeros(1, 1, d_model)) | |
| else: | |
| self.memory_token = None | |
| encoder_layer = nn.TransformerEncoderLayer( | |
| d_model=d_model, | |
| nhead=num_heads, | |
| dim_feedforward=ffn_dim, | |
| batch_first=True | |
| ) | |
| self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
| def forward(self, input_ids): | |
| x = self.embedding(input_ids) | |
| if self.memory_enabled and self.memory_token is not None: | |
| mem = self.memory_token.expand(x.size(0), 1, x.size(2)) | |
| x = torch.cat([mem, x], dim=1) | |
| x = self.transformer(x) | |
| return x | |
| class EvoTransformerV22(nn.Module): | |
| def __init__(self, config=None): | |
| super().__init__() | |
| # Default architecture if no config is passed | |
| if config is None: | |
| config = { | |
| "num_layers": 6, | |
| "ffn_dim": 1024, | |
| "num_heads": 8, | |
| "memory_enabled": True | |
| } | |
| self.encoder = EvoEncoder( | |
| d_model=512, | |
| num_heads=config["num_heads"], | |
| ffn_dim=config["ffn_dim"], | |
| num_layers=config["num_layers"], | |
| memory_enabled=config["memory_enabled"] | |
| ) | |
| self.pool = nn.AdaptiveAvgPool1d(1) | |
| self.classifier = nn.Linear(512, 1) | |
| def forward(self, input_ids): | |
| x = self.encoder(input_ids) | |
| x = self.pool(x.transpose(1, 2)).squeeze(-1) | |
| return self.classifier(x) | |
| # ✅ For loading models dynamically during mutation or feedback retrain | |
| def build_model_from_config(config): | |
| return EvoTransformerV22(config) | |