ggcristian's picture
Add MLCAD 2025 citation
21a7ca2
raw
history blame
22.1 kB
import sys
import gradio as gr
import pandas as pd
import plotly.express as px
from gradio.themes.utils import colors
from results.parse import parse_agg, read_data
from static.about import CITATION_BUTTON_LABEL, CITATION_BUTTON_TEXT
from style.css_html_js import custom_css
from utils import filter_bench, filter_bench_all, filter_RTLRepo, handle_special_cases
def filter_leaderboard(task, benchmark, model_type, search_query, max_params):
subset = df.copy()
# Filter by task specific benchmarks when 'All' benchmarks is selected
if task == "Spec-to-RTL":
valid_benchmarks = s2r_benchs
if benchmark == "All":
subset = subset[subset["Benchmark"].isin(valid_benchmarks)]
elif task == "Code Completion":
valid_benchmarks = cc_benchs
if benchmark == "All":
subset = subset[subset["Benchmark"].isin(valid_benchmarks)]
elif task == "Line Completion":
valid_benchmarks = lc_benchs
if benchmark == "All":
subset = subset[subset["Benchmark"].isin(valid_benchmarks)]
if benchmark != "All":
subset = df[df["Benchmark"] == benchmark]
if model_type != "All":
# without emojis
subset = subset[subset["Model Type"] == model_type.split(" ")[0]]
if search_query:
subset = subset[
subset["Model"].str.contains(search_query, case=False, na=False)
]
max_params = float(max_params)
subset = subset[subset["Params"] <= max_params]
if benchmark == "All":
if task == "Spec-to-RTL":
return filter_bench_all(subset, df_agg, agg_column="Agg S2R")
elif task == "Code Completion":
return filter_bench_all(subset, df_agg, agg_column="Agg MC")
elif task == "Line Completion":
return filter_RTLRepo(subset)
elif benchmark == "RTL-Repo":
return filter_RTLRepo(subset)
else:
agg_column = None
if benchmark == "VerilogEval S2R":
agg_column = "Agg VerilogEval S2R"
elif benchmark == "VerilogEval MC":
agg_column = "Agg VerilogEval MC"
elif benchmark == "RTLLM":
agg_column = "Agg RTLLM"
elif benchmark == "VeriGen":
agg_column = "Agg VeriGen"
return filter_bench(subset, df_agg, agg_column)
def update_benchmarks_by_task(task):
if task == "Spec-to-RTL":
new_benchmarks = ["All"] + s2r_benchs
elif task == "Code Completion":
new_benchmarks = ["All"] + cc_benchs
elif task == "Line Completion":
new_benchmarks = lc_benchs
else:
new_benchmarks = ["All"] + benchmarks
benchmark_value = "All" if "All" in new_benchmarks else new_benchmarks[0]
filtered = filter_leaderboard(
task,
benchmark_value,
model_type_dropdown.value,
search_box.value,
params_slider.value,
)
return gr.update(value=benchmark_value, choices=new_benchmarks), filtered
def generate_scatter_plot(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
subset = df[df["Benchmark"] == benchmark]
if benchmark == "RTL-Repo":
subset = subset[subset["Metric"].str.contains("EM", case=False, na=False)]
detailed_scores = subset.groupby("Model", as_index=False)["Score"].mean()
detailed_scores.rename(columns={"Score": "Exact Matching (EM)"}, inplace=True)
else:
detailed_scores = subset.pivot_table(
index="Model", columns="Metric", values="Score"
).reset_index()
details = df[["Model", "Params", "Model Type"]].drop_duplicates("Model")
scatter_data = pd.merge(detailed_scores, details, on="Model", how="left").dropna(
subset=["Params", metric]
)
scatter_data["x"] = scatter_data["Params"]
scatter_data["y"] = scatter_data[metric]
scatter_data["size"] = (scatter_data["x"] ** 0.3) * 40
type_colors = {"General": "green", "Coding": "yellow", "RTL-Specific": "blue"}
scatter_data["color"] = scatter_data["Model Type"].map(type_colors).fillna("gray")
y_axis_limits = {
"Functionality (FNC)": [5, 90],
"Syntax (STX)": [20, 100],
"Synthesis (SYN)": [5, 90],
"Power": [0, 50],
"Performance": [0, 50],
"Area": [0, 50],
"Exact Matching (EM)": [0, 50],
}
y_range = y_axis_limits.get(metric, [0, 80])
fig = px.scatter(
scatter_data,
x="x",
y="y",
log_x=True,
size="size",
color="Model Type",
text="Model",
hover_data={metric: ":.2f"},
title=f"Params vs. {metric} for {benchmark}",
labels={"x": "# Params (Log Scale)", "y": metric},
template="plotly_white",
height=600,
width=1200,
)
fig.update_traces(
textposition="top center",
textfont_size=10,
marker=dict(opacity=0.8, line=dict(width=0.5, color="black")),
)
fig.update_layout(
xaxis=dict(
showgrid=True,
type="log",
tickmode="array",
tickvals=[8, 14, 32, 72, 200, 700],
ticktext=["8", "14", "32", "72", "200", "700"],
),
showlegend=False,
yaxis=dict(range=y_range),
margin=dict(l=50, r=50, t=50, b=50),
plot_bgcolor="white",
)
return fig
js_func = """
function refresh() {
const url = new URL(window.location);
if (url.searchParams.get('__theme') !== 'light') {
url.searchParams.set('__theme', 'light');
window.location.href = url.href;
}
}
"""
with gr.Blocks(
css=custom_css, js=js_func, theme=gr.themes.Default(primary_hue=colors.emerald)
) as app:
df_icarus, benchmarks, metrics, default_metric = read_data(
"results/results_icarus.json"
)
df_agg_icarus = parse_agg("results/aggregated_scores_icarus.csv")
df_verilator, _, _, _ = read_data("results/results_verilator.json")
df_agg_verilator = parse_agg("results/aggregated_scores_verilator.csv")
df = df_icarus
df_agg = df_agg_icarus
tasks = ["Spec-to-RTL", "Code Completion", "Line Completion"]
s2r_benchs = ["VerilogEval S2R", "RTLLM"]
cc_benchs = ["VerilogEval MC", "VeriGen"]
lc_benchs = ["RTL-Repo"]
non_rtl_metrics = [
"Syntax (STX)",
"Functionality (FNC)",
"Synthesis (SYN)",
"Power",
"Performance",
"Area",
]
rtl_metrics = ["Exact Matching (EM)"]
model_types = ["All", "General 🟢", "Coding 🔵", "RTL-Specific 🔴"]
gr.HTML(
"""
<div align="center">
<img src='/gradio_api/file=logo.png' alt='TuRTLe Logo' width='220'/>
</div>
"""
)
gr.HTML(
"""
<link rel="stylesheet" href="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/css/all.min.css">
<script defer src="https://cdnjs.cloudflare.com/ajax/libs/font-awesome/6.0.0/js/all.min.js"></script>
<div style="text-align: center; margin-bottom: 0px; margin-top: 0px;">
<a href="https://github.com/HPAI-BSC/TuRTLe" target="_blank" style="text-decoration: none; margin-right: 10px;">
<button style="background: #333; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
GitHub Repo
</button>
</a>
<a href="http://arxiv.org/abs/2504.01986" target="_blank" style="text-decoration: none; margin-right: 10px;">
<button style="background: #b31b1b; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
arXiv MLCAD 2025
</button>
</a>
<a href="mailto:hpai@bsc.es?subject=TuRTLe%20leaderboard%20new%20entry&body=Link%20to%20HuggingFace%20Model:" style="text-decoration: none;">
<button style="background: #00674F; color: white; padding: 10px 14px; border-radius: 8px; border: none; font-size: 16px; cursor: pointer;">
How to submit
</button>
</a>
<p style="margin-top: 15px;">If you have any inquiries or wish to collaborate:
<a href="mailto:hpai@bsc.es">hpai@bsc.es</a>
</p>
</div>
"""
)
gr.HTML(
"""
<div style=" margin-top:-10px !important;">
<p style="margin-bottom: 15px; text-align: start !important;">Welcome to the TuRTLe Model Leaderboard! TuRTLe is a <b>unified evaluation framework designed to systematically assess Large Language Models (LLMs) in RTL (Register-Transfer Level) generation</b> for hardware design.
Evaluation criteria include <b>syntax correctness, functional accuracy, synthesizability, and post-synthesis quality</b> (PPA: Power, Performance, Area). TuRTLe integrates multiple benchmarks to highlight strengths and weaknesses of available LLMs.
Use the filters below to explore different RTL benchmarks, simulators and models.</p>
<p style="margin-top:10px; text-align:start !important;"> <span style="font-variant:small-caps; font-weight:bold;">UPDATE (JULY 2025)</span>: Our TuRTLe paper has been accepted to <a href="https://mlcad.org/symposium/2025/" target="_blank"><b>MLCAD 2025</b></a> which will be held in September in Santa Cruz, California!</p>
<p style="margin-top: -6px; text-align:start !important;"> <span style="font-variant:small-caps; font-weight:bold;">UPDATE (JULY 2025)</span>: Verilator has been added as an additional simulator alongside Icarus Verilog. You can now filter and compare results by simulator</p>
<p style="margin-top: -6px; text-align: start !important; "><span style="font-variant: small-caps; font-weight: bold;">UPDATE (JUNE 2025)</span>: We make our framework open-source on GitHub and we add 7 new recent models! For a total of 40 base and instruct models and 5 RTL benchmarks</p>
</div>
"""
)
with gr.Tabs():
with gr.Tab("Leaderboard"):
with gr.Row(equal_height=True):
with gr.Column(scale=4):
task_radio = gr.Radio(
choices=tasks, label="Select Task", value="Spec-to-RTL"
)
with gr.Column(scale=3):
benchmark_radio = gr.Radio(
choices=["All"] + s2r_benchs,
label="Select Benchmark",
value="All",
)
with gr.Column(scale=2, min_width=180):
simulator_radio = gr.Radio(
choices=["Icarus", "Verilator"],
value="Icarus",
label="Select Simulator",
scale=1,
)
with gr.Row(equal_height=True):
search_box = gr.Textbox(
label="Search Model",
placeholder="Type model name...",
scale=2,
)
model_type_dropdown = gr.Radio(
choices=model_types,
label="Select Model Type",
value="All",
scale=3,
)
params_slider = gr.Slider(
minimum=df["Params"].min(),
maximum=700,
value=700,
label="Max Params",
step=1,
scale=2,
)
leaderboard = gr.DataFrame(
value=filter_leaderboard("Spec-to-RTL", "All", "All", "", 700),
headers="first row",
show_row_numbers=True,
wrap=True,
datatype=[
"markdown",
"html",
],
interactive=False,
column_widths=[
"7%",
"24%",
"17%",
"10%",
"13%",
"10%",
"14%",
],
elem_classes="dataframe-leaderboard",
)
with gr.Tab("Plot View"):
with gr.Row(equal_height=True):
default_benchmark = s2r_benchs[0]
bubble_benchmark = gr.Dropdown(
choices=benchmarks,
label="Select Benchmark",
value=default_benchmark,
elem_classes="gr-dropdown",
)
default_metric = non_rtl_metrics[0]
bubble_metric = gr.Dropdown(
choices=non_rtl_metrics,
label="Select Metric",
value=default_metric,
)
with gr.Row(equal_height=True):
scatter_plot = gr.Plot(
value=generate_scatter_plot(default_benchmark, default_metric),
label="Bubble Chart",
elem_id="full-width-plot",
)
with gr.Tab("Metrics Information"):
with open("./static/metrics.md", "r") as file:
gr.Markdown(
file.read(),
latex_delimiters=[
{"left": "$$", "right": "$$", "display": True},
{"left": "$", "right": "$", "display": False},
],
elem_classes="metrics-page",
)
with gr.Tab("About Us"):
gr.HTML(
"""
<div style="max-width: 800px; margin: auto; padding: 20px; border: 1px solid #ccc; border-radius: 10px;">
<div style="display: flex; justify-content: center; align-items: center; gap: 5%; margin-bottom: 20px;">
<img src='/gradio_api/file=hpai_logo_grad.png' alt='HPAI Group Logo' style="width: 45%;"/>
<img src='/gradio_api/file=bsc-logo.png' alt='BSC Logo' style="width: 25%;"/>
</div>
<p style="font-size: 16px; text-align: start;">
The <b>High-Performance Artificial Intelligence (HPAI)</b> group is part of the
<a href="https://bsc.es/" target="_blank">Barcelona Supercomputing Center (BSC)</a>.
This leaderboard is maintained by HPAI as part of our commitment to <b>open science</b>.
</p>
<ul style="font-size: 16px; margin-bottom: 20px; margin-top: 20px;">
<li><a href="https://hpai.bsc.es/" target="_blank">HPAI Website</a></li>
<li><a href="https://github.com/HPAI-BSC/" target="_blank">HPAI GitHub Organization Page</a></li>
<li><a href="https://huggingface.co/HPAI-BSC/" target="_blank">HPAI Hugging Face Organization Page</a></li>
</ul>
<p style="font-size: 16px; margin-top: 15px;">
Feel free to contact us:
</p>
<p style="font-size: 16px;">Email: <a href="mailto:hpai@bsc.es"><b>hpai@bsc.es</b></a></p>
</div>
"""
)
with gr.Tab("References"):
gr.HTML(
"""
<div style="max-width: 800px; margin: auto; padding: 20px; border: 1px solid #ccc; border-radius: 10px;">
<ul style="font-size: 16px; margin-bottom: 20px; margin-top: 20px;">
<li><a href="https://github.com/bigcode-project/bigcode-evaluation-harness" target="_blank">Code Generation LM Evaluation Harness</a></li>
<li>Williams, S. Icarus Verilog [Computer software]. <a href="https://github.com/steveicarus/iverilog" target="_blank">https://github.com/steveicarus/iverilog</a></li>
<li>Snyder, W., Wasson, P., Galbi, D., & et al. Verilator [Computer software]. <a href="https://github.com/verilator/verilator" target="_blank">https://github.com/verilator/verilator</a></li>
<li>RTL-Repo: Allam and M. Shalan, “Rtl-repo: A benchmark for evaluating llms on large-scale rtl design projects,” in 2024 IEEE LLM Aided Design Workshop (LAD). IEEE, 2024, pp. 1–5.</li>
<li>VeriGen: S. Thakur, B. Ahmad, H. Pearce, B. Tan, B. Dolan-Gavitt, R. Karri, and S. Garg, “Verigen: A large language model for verilog code generation,” ACM Transactions on Design Automation of Electronic Systems, vol. 29, no. 3, pp. 1–31, 2024. </li>
<li>VerilogEval (I): M. Liu, N. Pinckney, B. Khailany, and H. Ren, “Verilogeval: Evaluating large language models for verilog code generation,” in 2023 IEEE/ACM International Conference on Computer Aided Design (ICCAD). IEEE, 2023, pp. 1–8.</li>
<li>VerilogEval (II): N. Pinckney, C. Batten, M. Liu, H. Ren, and B. Khailany, “Revisiting VerilogEval: A Year of Improvements in Large-Language Models for Hardware Code Generation,” ACM Trans. Des. Autom. Electron. Syst., feb 2025. https://doi.org/10.1145/3718088</li>
<li>RTLLM: Y. Lu, S. Liu, Q. Zhang, and Z. Xie, “Rtllm: An open-source benchmark for design rtl generation with large language model,” in 2024 29th Asia and South Pacific Design Automation Conference (ASP-DAC). IEEE, 2024, pp. 722–727.</li>
</ul>
</div>
"""
)
with gr.Row():
with gr.Accordion("📙 Citation", open=False):
citation_button = gr.Textbox(
value=CITATION_BUTTON_TEXT,
label=CITATION_BUTTON_LABEL,
lines=14,
elem_id="citation-button",
show_copy_button=True,
)
# event handlers, ugly way but it works
task_radio.change(
fn=update_benchmarks_by_task,
inputs=[task_radio],
outputs=[benchmark_radio, leaderboard],
)
benchmark_radio.change(
fn=filter_leaderboard,
inputs=[
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
],
outputs=leaderboard,
)
model_type_dropdown.change(
fn=filter_leaderboard,
inputs=[
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
],
outputs=leaderboard,
)
search_box.change(
fn=filter_leaderboard,
inputs=[
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
],
outputs=leaderboard,
)
params_slider.change(
fn=filter_leaderboard,
inputs=[
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
],
outputs=leaderboard,
)
def on_benchmark_change(benchmark, _):
if benchmark == "RTL-Repo":
metric = "Exact Matching (EM)"
return gr.update(choices=rtl_metrics, value=metric), generate_scatter_plot(
benchmark, metric
)
else:
metric = non_rtl_metrics[0]
return gr.update(
choices=non_rtl_metrics[:-1], value=metric
), generate_scatter_plot(benchmark, metric)
def on_metric_change(benchmark, metric):
benchmark, metric = handle_special_cases(benchmark, metric)
fig = generate_scatter_plot(benchmark, metric)
return gr.update(value=benchmark), fig
def on_simulator_change(
simulator,
task,
benchmark,
model_type,
search,
max_params,
plot_bench,
plot_metric,
):
global df, df_agg
if simulator == "Icarus":
df, df_agg = df_icarus, df_agg_icarus
else:
df, df_agg = df_verilator, df_agg_verilator
leaderboard_df = filter_leaderboard(
task, benchmark, model_type, search, max_params
)
fig = generate_scatter_plot(plot_bench, plot_metric)
return leaderboard_df, fig
bubble_benchmark.change(
fn=on_benchmark_change,
inputs=[bubble_benchmark, bubble_metric],
outputs=[bubble_metric, scatter_plot],
js=""" // this is to avoid resetting user scroll each time a plot is re-generated
(benchmark, metric) => {
let scrollY = window.scrollY;
const observer = new MutationObserver(() => {
window.scrollTo(0, scrollY);
observer.disconnect();
});
observer.observe(document.getElementById('full-width-plot'), { childList: true });
return [benchmark, metric];
}
""",
)
bubble_metric.change(
fn=on_metric_change,
inputs=[bubble_benchmark, bubble_metric],
outputs=[bubble_benchmark, scatter_plot],
js=""" // this is to avoid resetting user scroll each time a plot is re-generated
(benchmark, metric) => {
let scrollY = window.scrollY;
const observer = new MutationObserver(() => {
window.scrollTo(0, scrollY);
observer.disconnect();
});
observer.observe(document.getElementById('full-width-plot'), { childList: true });
return [benchmark, metric];
}
""",
)
simulator_radio.change(
fn=on_simulator_change,
inputs=[
simulator_radio,
task_radio,
benchmark_radio,
model_type_dropdown,
search_box,
params_slider,
bubble_benchmark,
bubble_metric,
],
outputs=[leaderboard, scatter_plot],
)
app.launch(
allowed_paths=[
"logo.png",
"hpai_logo_grad.png",
"bsc-logo.png",
]
)