Spaces:
Sleeping
Sleeping
Gil Stetler
commited on
Commit
·
3c3c589
1
Parent(s):
09f6668
utils fix 1-d
Browse files- utils_vol.py +118 -19
utils_vol.py
CHANGED
|
@@ -1,29 +1,128 @@
|
|
|
|
|
|
|
|
| 1 |
import yfinance as yf
|
| 2 |
import numpy as np
|
| 3 |
import pandas as pd
|
| 4 |
|
| 5 |
-
def
|
| 6 |
-
"""
|
| 7 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
if df is None or df.empty:
|
| 9 |
-
raise ValueError(f"Keine Daten für {ticker}.")
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
|
| 15 |
-
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 19 |
r = np.log(close).diff().dropna()
|
| 20 |
rv = r.rolling(window, min_periods=window).std()
|
| 21 |
if annualize:
|
| 22 |
-
rv
|
| 23 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
return df
|
|
|
|
| 1 |
+
# utils_vol.py — robuste Version
|
| 2 |
+
|
| 3 |
import yfinance as yf
|
| 4 |
import numpy as np
|
| 5 |
import pandas as pd
|
| 6 |
|
| 7 |
+
def _to_1d_series(obj: pd.Series | pd.DataFrame) -> pd.Series:
|
| 8 |
+
"""
|
| 9 |
+
Erzwingt eine 1D-Serie:
|
| 10 |
+
- DataFrame (n,1) -> squeeze
|
| 11 |
+
- MultiIndex -> erste passende Spalte
|
| 12 |
+
- alles in float konvertieren, NaNs droppen
|
| 13 |
+
"""
|
| 14 |
+
if isinstance(obj, pd.DataFrame):
|
| 15 |
+
# (n,1) -> Serie
|
| 16 |
+
if obj.shape[1] == 1:
|
| 17 |
+
ser = obj.squeeze(axis=1)
|
| 18 |
+
else:
|
| 19 |
+
# Fallback: nimm die erste numerische Spalte
|
| 20 |
+
num_cols = obj.select_dtypes(include=[np.number]).columns
|
| 21 |
+
if len(num_cols) > 0:
|
| 22 |
+
ser = obj[num_cols[0]]
|
| 23 |
+
else:
|
| 24 |
+
# nimm einfach die erste Spalte
|
| 25 |
+
ser = obj.iloc[:, 0]
|
| 26 |
+
else:
|
| 27 |
+
ser = obj
|
| 28 |
+
|
| 29 |
+
ser = pd.to_numeric(ser, errors="coerce")
|
| 30 |
+
ser = ser.dropna()
|
| 31 |
+
# Index in DatetimeIndex verwandeln, wenn möglich
|
| 32 |
+
if not isinstance(ser.index, pd.DatetimeIndex):
|
| 33 |
+
try:
|
| 34 |
+
ser.index = pd.to_datetime(ser.index, errors="coerce")
|
| 35 |
+
ser = ser[ser.index.notna()]
|
| 36 |
+
except Exception:
|
| 37 |
+
# notfalls RangeIndex lassen
|
| 38 |
+
pass
|
| 39 |
+
return ser.astype(float)
|
| 40 |
+
|
| 41 |
+
|
| 42 |
+
def fetch_close_series(ticker: str, start: str = "2015-01-01", interval: str = "1d") -> pd.Series:
|
| 43 |
+
"""
|
| 44 |
+
Lädt OHLCV via yfinance und gibt eine 1D-Schlusskurs-Serie zurück.
|
| 45 |
+
Nutzt auto_adjust=True (aktuelles yfinance-Default) bewusst,
|
| 46 |
+
damit der FutureWarning verschwindet und Adjusted/Close konsistent ist.
|
| 47 |
+
"""
|
| 48 |
+
df = yf.download(
|
| 49 |
+
ticker.strip(),
|
| 50 |
+
start=start,
|
| 51 |
+
interval=interval,
|
| 52 |
+
auto_adjust=True, # explizit setzen, um Warnung zu vermeiden
|
| 53 |
+
progress=False,
|
| 54 |
+
threads=True,
|
| 55 |
+
)
|
| 56 |
if df is None or df.empty:
|
| 57 |
+
raise ValueError(f"Keine Daten für {ticker} (start={start}, interval={interval}).")
|
| 58 |
+
|
| 59 |
+
# MultiIndex-Handling (bei mehreren Tickern oder Börsen-Suffixen)
|
| 60 |
+
if isinstance(df.columns, pd.MultiIndex):
|
| 61 |
+
# versuche 'Close' auf Level 0
|
| 62 |
+
if "Close" in df.columns.get_level_values(0):
|
| 63 |
+
sub = df.xs("Close", axis=1, level=0)
|
| 64 |
+
# falls mehrere Spalten (mehrere Ticker): nimm die erste
|
| 65 |
+
if sub.shape[1] > 1:
|
| 66 |
+
sub = sub.iloc[:, 0]
|
| 67 |
+
return _to_1d_series(sub)
|
| 68 |
+
# Fallback: erste numerische Spalte
|
| 69 |
+
num_cols = df.select_dtypes(include=[np.number]).columns
|
| 70 |
+
if len(num_cols) > 0:
|
| 71 |
+
sub = df[num_cols[0]]
|
| 72 |
+
return _to_1d_series(sub)
|
| 73 |
+
# letzter Ausweg: erste Spalte
|
| 74 |
+
return _to_1d_series(df.iloc[:, 0])
|
| 75 |
+
|
| 76 |
+
# Flache Spalten
|
| 77 |
+
for name in ["Close", "Adj Close", "close", "adj close", "Price", "price"]:
|
| 78 |
+
if name in df.columns:
|
| 79 |
+
return _to_1d_series(df[name])
|
| 80 |
+
|
| 81 |
+
# Fallback: erste numerische Spalte
|
| 82 |
+
num_cols = df.select_dtypes(include=[np.number]).columns
|
| 83 |
+
if len(num_cols) == 0:
|
| 84 |
+
raise ValueError("Keine numerische Close-Spalte gefunden.")
|
| 85 |
+
return _to_1d_series(df[num_cols[0]])
|
| 86 |
+
|
| 87 |
+
|
| 88 |
+
def realized_vol(close: pd.Series, window: int = 20, annualize: bool = True) -> pd.Series:
|
| 89 |
+
"""
|
| 90 |
+
20-Tage-Rolling-Std der Logrenditen; gibt IMMER eine 1D-Serie zurück.
|
| 91 |
+
"""
|
| 92 |
+
close = _to_1d_series(close)
|
| 93 |
r = np.log(close).diff().dropna()
|
| 94 |
rv = r.rolling(window, min_periods=window).std()
|
| 95 |
if annualize:
|
| 96 |
+
rv = rv * np.sqrt(252.0)
|
| 97 |
+
rv = rv.dropna()
|
| 98 |
+
# Sicherheitshalber 1D
|
| 99 |
+
return _to_1d_series(rv)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def rv_to_autogluon_df(rv: pd.Series | pd.DataFrame) -> pd.DataFrame:
|
| 103 |
+
"""
|
| 104 |
+
Formatiert Realized Vol als DataFrame für AutoGluon TimeSeries:
|
| 105 |
+
columns: ['item_id', 'timestamp', 'target']
|
| 106 |
+
"""
|
| 107 |
+
# Erzwinge Serie 1D
|
| 108 |
+
rv = _to_1d_series(rv)
|
| 109 |
|
| 110 |
+
# Werte & Index robust extrahieren
|
| 111 |
+
values = np.asarray(rv.values).reshape(-1) # 1D
|
| 112 |
+
idx = rv.index
|
| 113 |
+
if not isinstance(idx, pd.DatetimeIndex):
|
| 114 |
+
try:
|
| 115 |
+
idx = pd.to_datetime(idx, errors="coerce")
|
| 116 |
+
except Exception:
|
| 117 |
+
# Fallback: generiere einfache Range-Dates
|
| 118 |
+
idx = pd.date_range(start="2000-01-01", periods=len(values), freq="D")
|
| 119 |
+
# gültige Punkte
|
| 120 |
+
mask = ~np.isnan(values)
|
| 121 |
+
df = pd.DataFrame({
|
| 122 |
+
"item_id": "series_1",
|
| 123 |
+
"timestamp": idx[mask],
|
| 124 |
+
"target": values[mask],
|
| 125 |
+
})
|
| 126 |
+
# sortiert & ohne NaN-Timestamps
|
| 127 |
+
df = df[df["timestamp"].notna()].sort_values("timestamp")
|
| 128 |
return df
|