Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,17 +1,18 @@
|
|
| 1 |
import dash
|
| 2 |
-
from dash import dcc, html, Input, Output, State, ctx
|
|
|
|
| 3 |
import dash_bootstrap_components as dbc
|
| 4 |
import plotly.express as px
|
|
|
|
| 5 |
import pandas as pd
|
| 6 |
import numpy as np
|
| 7 |
import umap
|
| 8 |
import hdbscan
|
| 9 |
import sklearn.feature_extraction.text as text
|
| 10 |
from dash.exceptions import PreventUpdate
|
| 11 |
-
import
|
| 12 |
from dotenv import load_dotenv
|
| 13 |
import helpers
|
| 14 |
-
import lancedb
|
| 15 |
from omeka_s_api_client import OmekaSClient, OmekaSClientError
|
| 16 |
from lancedb_client import LanceDBManager
|
| 17 |
|
|
@@ -24,11 +25,12 @@ _DEFAULT_PARSE_METADATA = (
|
|
| 24 |
'bibo:annotates','bibo:content', 'bibo:locator', 'bibo:owner'
|
| 25 |
)
|
| 26 |
|
| 27 |
-
app = dash.Dash(__name__, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
| 28 |
app.config.suppress_callback_exceptions = True
|
| 29 |
server = app.server
|
| 30 |
manager = LanceDBManager()
|
| 31 |
|
|
|
|
| 32 |
french_stopwords = text.ENGLISH_STOP_WORDS.union([
|
| 33 |
"alors", "au", "aucuns", "aussi", "autre", "avant", "avec", "avoir", "bon",
|
| 34 |
"car", "ce", "cela", "ces", "ceux", "chaque", "ci", "comme", "comment", "dans",
|
|
@@ -46,58 +48,304 @@ french_stopwords = text.ENGLISH_STOP_WORDS.union([
|
|
| 46 |
])
|
| 47 |
|
| 48 |
# -------------------- Layout --------------------
|
| 49 |
-
app.layout =
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
dbc.Col([
|
| 56 |
-
html.
|
| 57 |
-
dcc.
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 63 |
|
| 64 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 65 |
html.H5("📁 From LanceDB"),
|
| 66 |
-
dbc.Button("Load
|
| 67 |
dcc.Dropdown(id="db-tables-dropdown", placeholder="Select an existing table"),
|
| 68 |
-
dbc.Button("Display Table", id="load-data-db", color="success", className="mt-2"),
|
| 69 |
-
|
|
|
|
| 70 |
|
| 71 |
-
|
| 72 |
-
html.H5("🔎 Query Tool (coming soon)"),
|
| 73 |
-
dbc.Input(placeholder="Type a search query...", type="text", disabled=True),
|
| 74 |
-
], md=4),
|
| 75 |
-
], className="mb-4"),
|
| 76 |
-
|
| 77 |
-
# Main plot area and metadata side panel
|
| 78 |
-
dbc.Row([
|
| 79 |
-
dbc.Col(
|
| 80 |
-
dcc.Graph(id="umap-graph", style={"height": "700px"}),
|
| 81 |
-
md=8
|
| 82 |
-
),
|
| 83 |
-
dbc.Col(
|
| 84 |
-
html.Div(id="point-details", style={
|
| 85 |
-
"padding": "15px",
|
| 86 |
-
"borderLeft": "1px solid #ccc",
|
| 87 |
-
"height": "700px",
|
| 88 |
-
"overflowY": "auto"
|
| 89 |
-
}),
|
| 90 |
-
md=4
|
| 91 |
-
),
|
| 92 |
-
]),
|
| 93 |
|
| 94 |
-
|
| 95 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 96 |
|
| 97 |
-
|
| 98 |
-
|
| 99 |
|
| 100 |
-
|
| 101 |
|
| 102 |
@app.callback(
|
| 103 |
Output("items-sets-dropdown", "options"),
|
|
@@ -106,7 +354,9 @@ app.layout = dbc.Container([
|
|
| 106 |
State("api-url", "value"),
|
| 107 |
prevent_initial_call=True
|
| 108 |
)
|
| 109 |
-
def load_item_sets(
|
|
|
|
|
|
|
| 110 |
client = OmekaSClient(base_url, "...", "...", 50)
|
| 111 |
try:
|
| 112 |
item_sets = client.list_all_item_sets()
|
|
@@ -120,108 +370,225 @@ def load_item_sets(n, base_url):
|
|
| 120 |
except Exception as e:
|
| 121 |
return dash.no_update, dash.no_update
|
| 122 |
|
|
|
|
| 123 |
@app.callback(
|
| 124 |
-
Output("db-tables-dropdown", "options"),
|
| 125 |
Input("load-tables", "n_clicks"),
|
| 126 |
prevent_initial_call=True
|
| 127 |
)
|
| 128 |
-
def list_tables(
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
| 130 |
|
|
|
|
| 131 |
@app.callback(
|
| 132 |
Output("umap-graph", "figure"),
|
| 133 |
Output("status", "children"),
|
| 134 |
-
Input("
|
| 135 |
-
Input("load-data-db", "n_clicks"), # From DB table
|
| 136 |
State("items-sets-dropdown", "value"),
|
| 137 |
State("omeka-client-config", "data"),
|
| 138 |
State("table-name", "value"),
|
| 139 |
-
State("db-tables-dropdown", "value"),
|
| 140 |
prevent_initial_call=True
|
| 141 |
)
|
| 142 |
-
def
|
| 143 |
-
|
| 144 |
-
print(triggered_id)
|
| 145 |
-
|
| 146 |
-
if triggered_id == "load-data": # Omeka S case
|
| 147 |
-
if not client_config:
|
| 148 |
-
raise PreventUpdate
|
| 149 |
-
|
| 150 |
-
client = OmekaSClient(
|
| 151 |
-
base_url=client_config["base_url"],
|
| 152 |
-
key_identity=client_config["key_identity"],
|
| 153 |
-
key_credential=client_config["key_credential"]
|
| 154 |
-
)
|
| 155 |
-
|
| 156 |
-
df_omeka = harvest_omeka_items(client, item_set_id=item_set_id)
|
| 157 |
-
items = df_omeka.to_dict(orient="records")
|
| 158 |
-
records_with_text = [helpers.add_concatenated_text_field_exclude_keys(item, keys_to_exclude=['id','images_urls'], text_field_key='text', pair_separator=' - ') for item in items]
|
| 159 |
-
df = helpers.prepare_df_atlas(pd.DataFrame(records_with_text), id_col='id', images_col='images_urls')
|
| 160 |
-
|
| 161 |
-
text_embed = helpers.generate_text_embed(df['text'].tolist())
|
| 162 |
-
img_embed = helpers.generate_img_embed(df['images_urls'].tolist())
|
| 163 |
-
embeddings = np.concatenate([text_embed, img_embed], axis=1)
|
| 164 |
-
df["embeddings"] = embeddings.tolist()
|
| 165 |
-
|
| 166 |
-
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, metric="cosine")
|
| 167 |
-
umap_embeddings = reducer.fit_transform(embeddings)
|
| 168 |
-
df["umap_embeddings"] = umap_embeddings.tolist()
|
| 169 |
-
|
| 170 |
-
clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
|
| 171 |
-
cluster_labels = clusterer.fit_predict(umap_embeddings)
|
| 172 |
-
df["Cluster"] = cluster_labels
|
| 173 |
-
|
| 174 |
-
vectorizer = text.TfidfVectorizer(max_features=1000, stop_words=list(french_stopwords), lowercase=True)
|
| 175 |
-
tfidf_matrix = vectorizer.fit_transform(df["text"].astype(str).tolist())
|
| 176 |
-
top_words = []
|
| 177 |
-
for label in sorted(df["Cluster"].unique()):
|
| 178 |
-
if label == -1:
|
| 179 |
-
top_words.append("Noise")
|
| 180 |
-
continue
|
| 181 |
-
mask = (df["Cluster"] == label).to_numpy().nonzero()[0]
|
| 182 |
-
cluster_docs = tfidf_matrix[mask]
|
| 183 |
-
mean_tfidf = cluster_docs.mean(axis=0)
|
| 184 |
-
mean_tfidf = np.asarray(mean_tfidf).flatten()
|
| 185 |
-
top_indices = mean_tfidf.argsort()[::-1][:5]
|
| 186 |
-
terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
|
| 187 |
-
top_words.append(", ".join(terms))
|
| 188 |
-
cluster_name_map = {label: name for label, name in zip(sorted(df["Cluster"].unique()), top_words)}
|
| 189 |
-
df["Topic"] = df["Cluster"].map(cluster_name_map)
|
| 190 |
-
|
| 191 |
-
manager.initialize_table(table_name)
|
| 192 |
-
manager.add_entry(table_name, df.to_dict(orient="records"))
|
| 193 |
-
|
| 194 |
-
elif triggered_id == "load-data-db": # Load existing LanceDB table
|
| 195 |
-
if not db_table:
|
| 196 |
-
raise PreventUpdate
|
| 197 |
-
items = manager.get_content_table(db_table)
|
| 198 |
-
df = pd.DataFrame(items)
|
| 199 |
-
df = df.dropna(axis=1, how='all')
|
| 200 |
-
df = df.fillna('')
|
| 201 |
-
#umap_embeddings = np.array(df["umap_embeddings"].tolist())
|
| 202 |
-
|
| 203 |
-
else:
|
| 204 |
raise PreventUpdate
|
| 205 |
|
| 206 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 207 |
return create_umap_plot(df)
|
| 208 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 209 |
|
|
|
|
| 210 |
@app.callback(
|
| 211 |
Output("point-details", "children"),
|
| 212 |
-
Input("umap-graph", "
|
| 213 |
)
|
| 214 |
-
def show_point_details(
|
| 215 |
-
if not
|
| 216 |
-
return html.Div("🖱️
|
| 217 |
-
img_url, title, desc =
|
| 218 |
return html.Div([
|
| 219 |
-
html.H4(title),
|
| 220 |
-
html.
|
| 221 |
-
html.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 222 |
])
|
| 223 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 224 |
# -------------------- Utility --------------------
|
|
|
|
| 225 |
|
| 226 |
def harvest_omeka_items(client, item_set_id=None, per_page=50):
|
| 227 |
"""
|
|
@@ -235,52 +602,146 @@ def harvest_omeka_items(client, item_set_id=None, per_page=50):
|
|
| 235 |
"""
|
| 236 |
print("\n--- Fetching and Parsing Multiple Items by colection---")
|
| 237 |
try:
|
| 238 |
-
# Fetch
|
| 239 |
items_list = client.list_all_items(item_set_id=item_set_id, per_page=per_page)
|
| 240 |
-
print(items_list)
|
| 241 |
-
print(f"Fetched {len(items_list)} items.")
|
| 242 |
|
| 243 |
parsed_items_list = []
|
| 244 |
-
for item_raw in items_list:
|
| 245 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 246 |
parsed = client.digest_item_data(item_raw, prefixes=_DEFAULT_PARSE_METADATA)
|
| 247 |
-
if parsed:
|
| 248 |
-
|
| 249 |
-
|
| 250 |
-
|
| 251 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 252 |
media = client.get_media(media_id)
|
| 253 |
-
|
| 254 |
-
|
| 255 |
-
|
| 256 |
-
|
| 257 |
-
|
| 258 |
-
|
| 259 |
-
|
| 260 |
-
|
| 261 |
-
|
| 262 |
-
|
| 263 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 264 |
except OmekaSClientError as e:
|
| 265 |
-
print(f"
|
|
|
|
| 266 |
except Exception as e:
|
| 267 |
-
print(f"
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
|
| 269 |
def create_umap_plot(df):
|
| 270 |
coords = np.array(df["umap_embeddings"].tolist())
|
| 271 |
fig = px.scatter(
|
| 272 |
-
df,
|
| 273 |
-
|
| 274 |
-
|
|
|
|
|
|
|
| 275 |
hover_data=None,
|
| 276 |
-
title="UMAP Projection with HDBSCAN Topics"
|
|
|
|
|
|
|
|
|
|
| 277 |
)
|
|
|
|
| 278 |
fig.update_traces(
|
| 279 |
-
marker=dict(
|
| 280 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 281 |
)
|
| 282 |
-
|
| 283 |
return fig, f"Loaded {len(df)} items and projected into 2D."
|
| 284 |
|
| 285 |
if __name__ == "__main__":
|
| 286 |
-
app.run(
|
|
|
|
| 1 |
import dash
|
| 2 |
+
from dash import dcc, html, Input, Output, State, ctx, callback_context
|
| 3 |
+
from dash.exceptions import PreventUpdate
|
| 4 |
import dash_bootstrap_components as dbc
|
| 5 |
import plotly.express as px
|
| 6 |
+
import plotly.graph_objects as go
|
| 7 |
import pandas as pd
|
| 8 |
import numpy as np
|
| 9 |
import umap
|
| 10 |
import hdbscan
|
| 11 |
import sklearn.feature_extraction.text as text
|
| 12 |
from dash.exceptions import PreventUpdate
|
| 13 |
+
import json
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
import helpers
|
|
|
|
| 16 |
from omeka_s_api_client import OmekaSClient, OmekaSClientError
|
| 17 |
from lancedb_client import LanceDBManager
|
| 18 |
|
|
|
|
| 25 |
'bibo:annotates','bibo:content', 'bibo:locator', 'bibo:owner'
|
| 26 |
)
|
| 27 |
|
| 28 |
+
app = dash.Dash(__name__, suppress_callback_exceptions=True, external_stylesheets=[dbc.themes.BOOTSTRAP])
|
| 29 |
app.config.suppress_callback_exceptions = True
|
| 30 |
server = app.server
|
| 31 |
manager = LanceDBManager()
|
| 32 |
|
| 33 |
+
|
| 34 |
french_stopwords = text.ENGLISH_STOP_WORDS.union([
|
| 35 |
"alors", "au", "aucuns", "aussi", "autre", "avant", "avec", "avoir", "bon",
|
| 36 |
"car", "ce", "cela", "ces", "ceux", "chaque", "ci", "comme", "comment", "dans",
|
|
|
|
| 48 |
])
|
| 49 |
|
| 50 |
# -------------------- Layout --------------------
|
| 51 |
+
app.layout = html.Div([
|
| 52 |
+
# Header
|
| 53 |
+
dbc.NavbarSimple(
|
| 54 |
+
children=[],
|
| 55 |
+
brand="Omeka S Computer Vision Asistant",
|
| 56 |
+
brand_href="/",
|
| 57 |
+
color="light",
|
| 58 |
+
dark=False,
|
| 59 |
+
className="mb-4 shadow-sm border-bottom"
|
| 60 |
+
),
|
| 61 |
+
|
| 62 |
+
# Main Container
|
| 63 |
+
dbc.Container(fluid=True, children=[
|
| 64 |
+
dbc.Row([
|
| 65 |
+
# Left column - Controls
|
| 66 |
+
dbc.Col(width=6, children=[
|
| 67 |
+
dbc.Card([
|
| 68 |
+
dbc.CardHeader(html.H4("Data Loading and ploting", className="text-center")),
|
| 69 |
+
dbc.CardBody([
|
| 70 |
+
|
| 71 |
+
# Tabs
|
| 72 |
+
dcc.Tabs(id="data-tabs", value="api", children=[
|
| 73 |
+
dcc.Tab(label="🔍 From Omeka S", value="omeka"),
|
| 74 |
+
dcc.Tab(label="📁 From LanceDB", value="lance")
|
| 75 |
+
]),
|
| 76 |
+
|
| 77 |
+
html.Div(id="data-tab-content"),
|
| 78 |
+
|
| 79 |
+
html.Br(),
|
| 80 |
+
])
|
| 81 |
+
], className="mb-4 shadow-sm")
|
| 82 |
+
]),
|
| 83 |
+
# Right column - Explanations
|
| 84 |
+
dbc.Col(width=6, children=[
|
| 85 |
+
dbc.Card([
|
| 86 |
+
dbc.CardHeader(
|
| 87 |
+
html.H4(
|
| 88 |
+
dbc.Button("Explanations", color="primary", id="explanation-toggle", n_clicks=0),
|
| 89 |
+
className="text-center"
|
| 90 |
+
)
|
| 91 |
+
),
|
| 92 |
+
dbc.Collapse(
|
| 93 |
+
dbc.CardBody([
|
| 94 |
+
html.P("This application allows you to explore Omeka S collections through interactive visualization."),
|
| 95 |
+
html.P("You can load data in two ways:"),
|
| 96 |
+
html.P("1. From Omeka S: Connect to your Omeka S instance and select a collection to visualize."),
|
| 97 |
+
html.P("2. From LanceDB: Load previously processed collections from the local database."),
|
| 98 |
+
html.P("The visualization uses UMAP projection and topic clustering to create an interactive map of your collection."),
|
| 99 |
+
html.P("You can explore items by hovering over points and search using semantic queries."),
|
| 100 |
+
]),
|
| 101 |
+
id="explanation-collapse",
|
| 102 |
+
is_open=False
|
| 103 |
+
)
|
| 104 |
+
], className="mb-4 shadow-sm")
|
| 105 |
+
])
|
| 106 |
+
]),
|
| 107 |
+
|
| 108 |
+
html.Br(),
|
| 109 |
+
dbc.Row([
|
| 110 |
+
dbc.Col([
|
| 111 |
+
dbc.InputGroup([
|
| 112 |
+
dbc.Input(
|
| 113 |
+
id="search-input",
|
| 114 |
+
type="text",
|
| 115 |
+
placeholder="Search...",
|
| 116 |
+
),
|
| 117 |
+
dbc.Button(
|
| 118 |
+
"Search",
|
| 119 |
+
id="search-button",
|
| 120 |
+
color="primary",
|
| 121 |
+
size="sm",
|
| 122 |
+
),
|
| 123 |
+
dbc.Button(
|
| 124 |
+
"Clear",
|
| 125 |
+
id="clear-button",
|
| 126 |
+
color="secondary",
|
| 127 |
+
size="sm",
|
| 128 |
+
),
|
| 129 |
+
], className="d-flex align-items-center")
|
| 130 |
+
], width={"size": 6, "offset": 3}), # Center the input group and make it half width
|
| 131 |
+
], className="mb-3"),
|
| 132 |
+
dbc.Row([
|
| 133 |
dbc.Col([
|
| 134 |
+
html.Label("Number of results:", className="mb-0"),
|
| 135 |
+
dcc.Slider(
|
| 136 |
+
id="search-limit-slider",
|
| 137 |
+
min=1,
|
| 138 |
+
max=50,
|
| 139 |
+
step=1,
|
| 140 |
+
value=5,
|
| 141 |
+
marks={i: str(i) for i in range(1, 51, 1)},
|
| 142 |
+
className="mt-1"
|
| 143 |
+
),
|
| 144 |
+
], width={"size": 6, "offset": 3}),
|
| 145 |
+
], className="mb-3"),
|
| 146 |
+
html.Br(),
|
| 147 |
+
# Central Visualization (like scatter plot, map etc.)
|
| 148 |
+
dbc.Row([
|
| 149 |
+
html.Div([
|
| 150 |
+
dbc.Spinner(
|
| 151 |
+
id="loading-spinner",
|
| 152 |
+
type="grow",
|
| 153 |
+
color="primary",
|
| 154 |
+
fullscreen=False,
|
| 155 |
+
children=[
|
| 156 |
+
# Add a placeholder div
|
| 157 |
+
html.Div(
|
| 158 |
+
id="graph-placeholder",
|
| 159 |
+
children="Select a data source and load data to visualize",
|
| 160 |
+
style={
|
| 161 |
+
"height": "700px",
|
| 162 |
+
"display": "flex",
|
| 163 |
+
"alignItems": "center",
|
| 164 |
+
"justifyContent": "center",
|
| 165 |
+
"color": "#666",
|
| 166 |
+
"fontSize": "1.2rem",
|
| 167 |
+
"fontStyle": "italic",
|
| 168 |
+
"width": "900px" # Set width to 70%
|
| 169 |
+
}
|
| 170 |
+
),
|
| 171 |
+
dcc.Graph(
|
| 172 |
+
id="umap-graph",
|
| 173 |
+
style={
|
| 174 |
+
"width": "900px", # Set width to 70%
|
| 175 |
+
"height": "700px",
|
| 176 |
+
"display": "none"
|
| 177 |
+
},
|
| 178 |
+
config={
|
| 179 |
+
'scrollZoom': True,
|
| 180 |
+
'displayModeBar': True,
|
| 181 |
+
'modeBarButtonsToAdd': ['drawline']
|
| 182 |
+
}
|
| 183 |
+
)],
|
| 184 |
+
),
|
| 185 |
+
html.Div(id="point-details",
|
| 186 |
+
style={
|
| 187 |
+
"width": "30%", # Set width to 30%
|
| 188 |
+
"padding": "15px",
|
| 189 |
+
"borderLeft": "1px solid #ccc",
|
| 190 |
+
"overflowY": "auto",
|
| 191 |
+
"height": "700px",
|
| 192 |
+
"minWidth": "250px",
|
| 193 |
+
"maxWidth": "30%" # Match the width
|
| 194 |
+
}),
|
| 195 |
+
],
|
| 196 |
+
style={
|
| 197 |
+
"display": "flex",
|
| 198 |
+
"flexDirection": "row",
|
| 199 |
+
"width": "100%",
|
| 200 |
+
"gap": "10px",
|
| 201 |
+
"justifyContent": "space-between"
|
| 202 |
+
}),
|
| 203 |
+
]),
|
| 204 |
+
html.Div(id="status"),
|
| 205 |
+
dcc.Store(id="omeka-client-config", storage_type="session"),
|
| 206 |
+
]),
|
| 207 |
+
|
| 208 |
+
# Footer
|
| 209 |
+
html.Footer([
|
| 210 |
+
html.Hr(),
|
| 211 |
+
dbc.Container([
|
| 212 |
+
dbc.Row([
|
| 213 |
+
dbc.Col([
|
| 214 |
+
html.Img(src="SmartBibl.IA_Solutions.png", height="50"),
|
| 215 |
+
html.Small([
|
| 216 |
+
html.Br(),
|
| 217 |
+
html.A("Géraldine Geoffroy", href="mailto:grldn.geoffroy@gmail.com", className="text-muted")
|
| 218 |
+
])
|
| 219 |
+
]),
|
| 220 |
+
dbc.Col([
|
| 221 |
+
html.H5("Code source"),
|
| 222 |
+
html.Ul([
|
| 223 |
+
html.Li(html.A("Github", href="https://github.com/gegedenice/openalex-explorer", className="text-muted", target="_blank"))
|
| 224 |
+
])
|
| 225 |
+
]),
|
| 226 |
+
dbc.Col([
|
| 227 |
+
html.H5("Ressources"),
|
| 228 |
+
html.Ul([
|
| 229 |
+
html.Li(html.A("Nomic Atlas", href="https://atlas.nomic.ai/", target="_blank", className="text-muted")),
|
| 230 |
+
html.Li(html.A("Model nomic-embed-text-v1.5", href="https://huggingface.co/nomic-ai/nomic-embed-text-v1.5", target="_blank", className="text-muted")),
|
| 231 |
+
html.Li(html.A("Model nomic-embed-vision-v1.5", href="https://huggingface.co/nomic-ai/nomic-embed-vision-v1.5", target="_blank", className="text-muted"))
|
| 232 |
+
])
|
| 233 |
+
])
|
| 234 |
+
])
|
| 235 |
+
])
|
| 236 |
+
], className="mt-5 p-3 bg-light border-top")
|
| 237 |
+
])
|
| 238 |
|
| 239 |
+
# -------------------- UI Callbacks --------------------
|
| 240 |
+
# ------------------------------------------------------
|
| 241 |
+
|
| 242 |
+
##-------------------- Tabs Callbacks --------------------
|
| 243 |
+
@app.callback(
|
| 244 |
+
Output("data-tab-content", "children"),
|
| 245 |
+
Input("data-tabs", "value")
|
| 246 |
+
)
|
| 247 |
+
def render_tab_content(tab):
|
| 248 |
+
if tab == "omeka":
|
| 249 |
+
return html.Div([
|
| 250 |
+
html.Div([
|
| 251 |
+
html.H5("🔍 From Omeka S", className="mb-3"),
|
| 252 |
+
# API URL input with full width
|
| 253 |
+
dbc.InputGroup([
|
| 254 |
+
dbc.Input(
|
| 255 |
+
id="api-url",
|
| 256 |
+
value="https://your-omeka-instance.org",
|
| 257 |
+
type="url",
|
| 258 |
+
placeholder="Enter your Omeka S instance URL",
|
| 259 |
+
className="mb-2"
|
| 260 |
+
),
|
| 261 |
+
]),
|
| 262 |
+
# Buttons and dropdowns container
|
| 263 |
+
dbc.Container([
|
| 264 |
+
dbc.Row([
|
| 265 |
+
dbc.Col([
|
| 266 |
+
dbc.Button(
|
| 267 |
+
"Load Item Sets",
|
| 268 |
+
id="load-sets",
|
| 269 |
+
color="link",
|
| 270 |
+
size="sm",
|
| 271 |
+
className="w-100 mb-2"
|
| 272 |
+
),
|
| 273 |
+
]),
|
| 274 |
+
]),
|
| 275 |
+
dbc.Row([
|
| 276 |
+
dbc.Col([
|
| 277 |
+
dcc.Dropdown(
|
| 278 |
+
id="items-sets-dropdown",
|
| 279 |
+
placeholder="Select a collection",
|
| 280 |
+
className="mb-2"
|
| 281 |
+
),
|
| 282 |
+
]),
|
| 283 |
+
]),
|
| 284 |
+
dbc.Row([
|
| 285 |
+
dbc.Col([
|
| 286 |
+
dbc.Input(
|
| 287 |
+
id="table-name",
|
| 288 |
+
value="Enter a table name for data storage",
|
| 289 |
+
type="text",
|
| 290 |
+
placeholder="New table name",
|
| 291 |
+
className="mb-2"
|
| 292 |
+
),
|
| 293 |
+
]),
|
| 294 |
+
]),
|
| 295 |
+
dbc.Row([
|
| 296 |
+
dbc.Col([
|
| 297 |
+
dbc.Button(
|
| 298 |
+
"Process Omeka Collection",
|
| 299 |
+
id="process-omeka",
|
| 300 |
+
color="success",
|
| 301 |
+
size="sm",
|
| 302 |
+
className="mt-2"
|
| 303 |
+
),
|
| 304 |
+
]),
|
| 305 |
+
]),
|
| 306 |
+
], fluid=True, className="p-0"),
|
| 307 |
+
], className="p-3"),
|
| 308 |
+
], className="border rounded bg-white shadow-sm")
|
| 309 |
+
elif tab == "lance":
|
| 310 |
+
return html.Div([
|
| 311 |
html.H5("📁 From LanceDB"),
|
| 312 |
+
dbc.Button("Load LanceDB tables", id="load-tables", color="link", size="sm", className="mt-2"),
|
| 313 |
dcc.Dropdown(id="db-tables-dropdown", placeholder="Select an existing table"),
|
| 314 |
+
dbc.Button("Display Table", id="load-data-db", color="success", size="sm", className="mt-2"),
|
| 315 |
+
dbc.Button("Drop Table", id="drop-data-db", color="danger", size="sm", className="mt-2"),
|
| 316 |
+
])
|
| 317 |
|
| 318 |
+
return html.Div("Invalid tab selected.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 319 |
|
| 320 |
+
# -------------------- Collpase callback --------------------
|
| 321 |
+
@app.callback(
|
| 322 |
+
Output("explanation-collapse", "is_open"),
|
| 323 |
+
Input("explanation-toggle", "n_clicks"),
|
| 324 |
+
prevent_initial_call=True
|
| 325 |
+
)
|
| 326 |
+
def toggle_collapse(n):
|
| 327 |
+
return n % 2 == 1
|
| 328 |
+
|
| 329 |
+
# -------------------- Graph placeholder Toggle callback --------------------
|
| 330 |
+
@app.callback(
|
| 331 |
+
Output("graph-placeholder", "style"),
|
| 332 |
+
Output("umap-graph", "style"),
|
| 333 |
+
[Input("umap-graph", "figure")],
|
| 334 |
+
prevent_initial_call=True
|
| 335 |
+
)
|
| 336 |
+
def toggle_graph_visibility(figure):
|
| 337 |
+
if figure is None:
|
| 338 |
+
return {"display": "flex"}, {"display": "none"}
|
| 339 |
+
return {"display": "none"}, {
|
| 340 |
+
"flex": 3,
|
| 341 |
+
"width": "100%",
|
| 342 |
+
"display": "block"
|
| 343 |
+
}
|
| 344 |
|
| 345 |
+
# -------------------- Features Callbacks --------------------
|
| 346 |
+
# ------------------------------------------------------------
|
| 347 |
|
| 348 |
+
## -------------------- Load Omeka collections callback--------------------
|
| 349 |
|
| 350 |
@app.callback(
|
| 351 |
Output("items-sets-dropdown", "options"),
|
|
|
|
| 354 |
State("api-url", "value"),
|
| 355 |
prevent_initial_call=True
|
| 356 |
)
|
| 357 |
+
def load_item_sets(n_clicks, base_url):
|
| 358 |
+
if n_clicks is None: # Add this check
|
| 359 |
+
raise PreventUpdate
|
| 360 |
client = OmekaSClient(base_url, "...", "...", 50)
|
| 361 |
try:
|
| 362 |
item_sets = client.list_all_item_sets()
|
|
|
|
| 370 |
except Exception as e:
|
| 371 |
return dash.no_update, dash.no_update
|
| 372 |
|
| 373 |
+
## -------------------- Load LanceDB tables callback--------------------
|
| 374 |
@app.callback(
|
| 375 |
+
Output("db-tables-dropdown", "options", allow_duplicate=True),
|
| 376 |
Input("load-tables", "n_clicks"),
|
| 377 |
prevent_initial_call=True
|
| 378 |
)
|
| 379 |
+
def list_tables(n_clicks):
|
| 380 |
+
if not n_clicks:
|
| 381 |
+
raise PreventUpdate
|
| 382 |
+
tables = manager.list_tables()
|
| 383 |
+
return [{"label": t, "value": t} for t in tables]
|
| 384 |
|
| 385 |
+
## -------------------- Load & Process Omeka items callback--------------------
|
| 386 |
@app.callback(
|
| 387 |
Output("umap-graph", "figure"),
|
| 388 |
Output("status", "children"),
|
| 389 |
+
Input("process-omeka", "n_clicks"), # Changed ID to match new button
|
|
|
|
| 390 |
State("items-sets-dropdown", "value"),
|
| 391 |
State("omeka-client-config", "data"),
|
| 392 |
State("table-name", "value"),
|
|
|
|
| 393 |
prevent_initial_call=True
|
| 394 |
)
|
| 395 |
+
def handle_omeka_data(n_clicks, item_set_id, client_config, table_name):
|
| 396 |
+
if not n_clicks or not client_config:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
raise PreventUpdate
|
| 398 |
|
| 399 |
+
client = OmekaSClient(
|
| 400 |
+
base_url=client_config["base_url"],
|
| 401 |
+
key_identity=client_config["key_identity"],
|
| 402 |
+
key_credential=client_config["key_credential"]
|
| 403 |
+
)
|
| 404 |
+
|
| 405 |
+
df_omeka = harvest_omeka_items(client, item_set_id=item_set_id)
|
| 406 |
+
items = df_omeka.to_dict(orient="records")
|
| 407 |
+
records_with_text = [helpers.add_concatenated_text_field_exclude_keys(item, keys_to_exclude=['id','images_urls'], text_field_key='text', pair_separator=' - ') for item in items]
|
| 408 |
+
df = helpers.prepare_df_atlas(pd.DataFrame(records_with_text), id_col='id', images_col='images_urls')
|
| 409 |
+
|
| 410 |
+
text_embed = helpers.generate_text_embed(df['text'].tolist())
|
| 411 |
+
img_embed = helpers.generate_img_embed(df['images_urls'].tolist())
|
| 412 |
+
embeddings = (text_embed + img_embed) / 2 # Average the embeddings
|
| 413 |
+
df["embeddings"] = embeddings.tolist()
|
| 414 |
+
|
| 415 |
+
reducer = umap.UMAP(n_neighbors=15, min_dist=0.1, n_components=2, metric='cosine', random_state=42)
|
| 416 |
+
umap_embeddings = reducer.fit_transform(embeddings)
|
| 417 |
+
df["umap_embeddings"] = umap_embeddings.tolist()
|
| 418 |
+
|
| 419 |
+
clusterer = hdbscan.HDBSCAN(min_cluster_size=10)
|
| 420 |
+
cluster_labels = clusterer.fit_predict(umap_embeddings)
|
| 421 |
+
df["Cluster"] = cluster_labels
|
| 422 |
+
|
| 423 |
+
vectorizer = text.TfidfVectorizer(max_features=1000, stop_words=list(french_stopwords), lowercase=True)
|
| 424 |
+
tfidf_matrix = vectorizer.fit_transform(df["text"].astype(str).tolist())
|
| 425 |
+
top_words = []
|
| 426 |
+
for label in sorted(df["Cluster"].unique()):
|
| 427 |
+
if label == -1:
|
| 428 |
+
top_words.append("Noise")
|
| 429 |
+
continue
|
| 430 |
+
mask = (df["Cluster"] == label).to_numpy().nonzero()[0]
|
| 431 |
+
cluster_docs = tfidf_matrix[mask]
|
| 432 |
+
mean_tfidf = cluster_docs.mean(axis=0)
|
| 433 |
+
mean_tfidf = np.asarray(mean_tfidf).flatten()
|
| 434 |
+
top_indices = mean_tfidf.argsort()[::-1][:5]
|
| 435 |
+
terms = [vectorizer.get_feature_names_out()[i] for i in top_indices]
|
| 436 |
+
top_words.append(", ".join(terms))
|
| 437 |
+
cluster_name_map = {label: name for label, name in zip(sorted(df["Cluster"].unique()), top_words)}
|
| 438 |
+
df["Topic"] = df["Cluster"].map(cluster_name_map)
|
| 439 |
+
|
| 440 |
+
manager.initialize_table(table_name)
|
| 441 |
+
manager.add_entry(table_name, df.to_dict(orient="records"))
|
| 442 |
+
|
| 443 |
return create_umap_plot(df)
|
| 444 |
|
| 445 |
+
## -------------------- Load LanceDB data callback--------------------
|
| 446 |
+
@app.callback(
|
| 447 |
+
Output("umap-graph", "figure", allow_duplicate=True),
|
| 448 |
+
Output("status", "children", allow_duplicate=True),
|
| 449 |
+
Input("load-data-db", "n_clicks"),
|
| 450 |
+
State("db-tables-dropdown", "value"),
|
| 451 |
+
prevent_initial_call=True
|
| 452 |
+
)
|
| 453 |
+
def handle_db_data(n_clicks, db_table):
|
| 454 |
+
if not n_clicks or not db_table:
|
| 455 |
+
raise PreventUpdate
|
| 456 |
+
|
| 457 |
+
items = manager.get_content_table(db_table)
|
| 458 |
+
df = pd.DataFrame(items)
|
| 459 |
+
df = df.dropna(axis=1, how='all')
|
| 460 |
+
df = df.fillna('')
|
| 461 |
+
#umap_embeddings = np.array(df["umap_embeddings"].tolist())
|
| 462 |
+
return create_umap_plot(df)
|
| 463 |
|
| 464 |
+
## -------------------- plotly Hover datapoint callback--------------------
|
| 465 |
@app.callback(
|
| 466 |
Output("point-details", "children"),
|
| 467 |
+
Input("umap-graph", "hoverData")
|
| 468 |
)
|
| 469 |
+
def show_point_details(hoverData):
|
| 470 |
+
if not hoverData:
|
| 471 |
+
return html.Div("🖱️ Hover a point to see more details.", style={"color": "#888"})
|
| 472 |
+
id,item_id, img_url, title, desc = hoverData["points"][0]["customdata"]
|
| 473 |
return html.Div([
|
| 474 |
+
html.H4(title, style={"fontSize": "1.2rem"}), # Reduced header size
|
| 475 |
+
html.P(f"Item ID: {item_id}", style={"fontSize": "0.9rem", "color": "#666"}), # Smaller text
|
| 476 |
+
html.Img(src=img_url, style={
|
| 477 |
+
"maxWidth": "300px", # Fixed max width instead of 100%
|
| 478 |
+
"height": "auto", # Maintain aspect ratio
|
| 479 |
+
"marginBottom": "10px",
|
| 480 |
+
"borderRadius": "5px",
|
| 481 |
+
"boxShadow": "0 2px 4px rgba(0,0,0,0.1)"
|
| 482 |
+
}),
|
| 483 |
+
html.P(desc or "No description available.",
|
| 484 |
+
style={"lineHeight": "1.6", "color": "#444", "fontSize": "0.9rem"}) # Smaller text
|
| 485 |
])
|
| 486 |
|
| 487 |
+
## -------------------- Search & filter datapoint callback--------------------
|
| 488 |
+
@app.callback(
|
| 489 |
+
Output("umap-graph", "figure", allow_duplicate=True),
|
| 490 |
+
Input("search-button", "n_clicks"),
|
| 491 |
+
Input("search-limit-slider", "value"), # Add slider input
|
| 492 |
+
State("search-input", "value"),
|
| 493 |
+
State("db-tables-dropdown", "value"),
|
| 494 |
+
State("umap-graph", "figure"),
|
| 495 |
+
prevent_initial_call=True
|
| 496 |
+
)
|
| 497 |
+
def filter_points(n_clicks, limit, search_query, table, current_fig):
|
| 498 |
+
# Get the trigger that caused the callback
|
| 499 |
+
trigger = ctx.triggered_id
|
| 500 |
+
|
| 501 |
+
# If slider changed but no search query exists, don't update
|
| 502 |
+
if trigger == "search-limit-slider" and not search_query:
|
| 503 |
+
return dash.no_update
|
| 504 |
+
|
| 505 |
+
if not search_query:
|
| 506 |
+
# Reset visibility of all points
|
| 507 |
+
for trace in current_fig['data']:
|
| 508 |
+
trace['visible'] = True
|
| 509 |
+
return current_fig
|
| 510 |
+
|
| 511 |
+
# Generate text embedding
|
| 512 |
+
query_embed = helpers.generate_text_embed([f"search_query: {search_query}"]).tolist()
|
| 513 |
+
|
| 514 |
+
# Perform semantic search using the slider value
|
| 515 |
+
matching = manager.semantic_search(
|
| 516 |
+
table_name=table,
|
| 517 |
+
query_embed=query_embed,
|
| 518 |
+
limit=limit # Use the slider value
|
| 519 |
+
)
|
| 520 |
+
|
| 521 |
+
matching_ids = [item['id'] for item in json.loads(matching)]
|
| 522 |
+
print(f"Searching for '{search_query}' with limit {limit}")
|
| 523 |
+
print(f"Found {len(matching_ids)} matches")
|
| 524 |
+
|
| 525 |
+
# Update visibility of points
|
| 526 |
+
fig = go.Figure(current_fig)
|
| 527 |
+
for trace in fig.data:
|
| 528 |
+
point_ids = [point[0] for point in trace['customdata']]
|
| 529 |
+
selected_indices = [i for i, id in enumerate(point_ids) if id in matching_ids]
|
| 530 |
+
trace.update(
|
| 531 |
+
selectedpoints=selected_indices,
|
| 532 |
+
unselected=dict(marker=dict(opacity=0.1))
|
| 533 |
+
)
|
| 534 |
+
|
| 535 |
+
return fig
|
| 536 |
+
|
| 537 |
+
## -------------------- Clear search callback--------------------
|
| 538 |
+
@app.callback(
|
| 539 |
+
Output("umap-graph", "figure", allow_duplicate=True),
|
| 540 |
+
Output("search-input", "value"), # Clear the search input
|
| 541 |
+
Input("clear-button", "n_clicks"),
|
| 542 |
+
State("umap-graph", "figure"),
|
| 543 |
+
prevent_initial_call=True
|
| 544 |
+
)
|
| 545 |
+
def clear_search(n_clicks, current_fig):
|
| 546 |
+
if not n_clicks:
|
| 547 |
+
raise PreventUpdate
|
| 548 |
+
|
| 549 |
+
fig = go.Figure(current_fig)
|
| 550 |
+
|
| 551 |
+
# Reset all points to visible and full opacity
|
| 552 |
+
for trace in fig.data:
|
| 553 |
+
trace.update(
|
| 554 |
+
selectedpoints=None,
|
| 555 |
+
unselected=None,
|
| 556 |
+
opacity=0.8
|
| 557 |
+
)
|
| 558 |
+
|
| 559 |
+
return fig, "" # Return cleared figure and empty search input
|
| 560 |
+
|
| 561 |
+
## -------------------- Load LanceDB data callback--------------------
|
| 562 |
+
@app.callback(
|
| 563 |
+
Output("db-tables-dropdown", "options",allow_duplicate=True), # Update dropdown options
|
| 564 |
+
Output("status", "children",allow_duplicate=True), # Show status message
|
| 565 |
+
Output("db-tables-dropdown", "value",allow_duplicate=True), # Clear current selection
|
| 566 |
+
Input("drop-data-db", "n_clicks"),
|
| 567 |
+
State("db-tables-dropdown", "value"),
|
| 568 |
+
prevent_initial_call=True
|
| 569 |
+
)
|
| 570 |
+
def drop_db_data(n_clicks, db_table):
|
| 571 |
+
if not n_clicks or not db_table:
|
| 572 |
+
raise PreventUpdate
|
| 573 |
+
|
| 574 |
+
try:
|
| 575 |
+
# Delete the table
|
| 576 |
+
success = manager.drop_table(db_table)
|
| 577 |
+
|
| 578 |
+
if success:
|
| 579 |
+
# Get updated list of tables
|
| 580 |
+
tables = manager.list_tables()
|
| 581 |
+
options = [{"label": t, "value": t} for t in tables]
|
| 582 |
+
return options, f"Table '{db_table}' successfully deleted", None
|
| 583 |
+
else:
|
| 584 |
+
return dash.no_update, f"Failed to delete table '{db_table}'", dash.no_update
|
| 585 |
+
|
| 586 |
+
except Exception as e:
|
| 587 |
+
print(f"Error dropping table: {str(e)}")
|
| 588 |
+
return dash.no_update, f"Error: {str(e)}", dash.no_update
|
| 589 |
+
|
| 590 |
# -------------------- Utility --------------------
|
| 591 |
+
# -------------------------------------------------
|
| 592 |
|
| 593 |
def harvest_omeka_items(client, item_set_id=None, per_page=50):
|
| 594 |
"""
|
|
|
|
| 602 |
"""
|
| 603 |
print("\n--- Fetching and Parsing Multiple Items by colection---")
|
| 604 |
try:
|
| 605 |
+
# Fetch items
|
| 606 |
items_list = client.list_all_items(item_set_id=item_set_id, per_page=per_page)
|
| 607 |
+
print(f"Initial fetch: {len(items_list)} items")
|
|
|
|
| 608 |
|
| 609 |
parsed_items_list = []
|
| 610 |
+
for idx, item_raw in enumerate(items_list):
|
| 611 |
+
try:
|
| 612 |
+
print(f"\nProcessing item {idx + 1}/{len(items_list)}")
|
| 613 |
+
if 'o:media' not in item_raw:
|
| 614 |
+
print(f"Skipping item {idx + 1}: No media found")
|
| 615 |
+
continue
|
| 616 |
+
|
| 617 |
parsed = client.digest_item_data(item_raw, prefixes=_DEFAULT_PARSE_METADATA)
|
| 618 |
+
if not parsed:
|
| 619 |
+
print(f"Skipping item {idx + 1}: Parsing failed")
|
| 620 |
+
continue
|
| 621 |
+
|
| 622 |
+
# Debug media processing
|
| 623 |
+
medias_id = [x["o:id"] for x in item_raw["o:media"]]
|
| 624 |
+
print(f"Found {len(medias_id)} media items")
|
| 625 |
+
|
| 626 |
+
medias_list = []
|
| 627 |
+
for media_id in medias_id:
|
| 628 |
+
try:
|
| 629 |
media = client.get_media(media_id)
|
| 630 |
+
print(f"Media type: {media.get('o:media_type', 'unknown')}")
|
| 631 |
+
if "image" in media.get("o:media_type", ""):
|
| 632 |
+
url = media.get('o:original_url')
|
| 633 |
+
if url:
|
| 634 |
+
medias_list.append(url)
|
| 635 |
+
else:
|
| 636 |
+
print(f"No URL found for media {media_id}")
|
| 637 |
+
except Exception as e:
|
| 638 |
+
print(f"Error processing media {media_id}: {str(e)}")
|
| 639 |
+
|
| 640 |
+
if medias_list:
|
| 641 |
+
parsed["images_urls"] = medias_list
|
| 642 |
+
parsed_items_list.append(parsed)
|
| 643 |
+
print(f"Added item with {len(medias_list)} images")
|
| 644 |
+
else:
|
| 645 |
+
print(f"Skipping item {idx + 1}: No valid image URLs found")
|
| 646 |
+
|
| 647 |
+
except Exception as e:
|
| 648 |
+
print(f"Error processing item {idx + 1}: {str(e)}")
|
| 649 |
+
print(f"Item raw data: {item_raw}")
|
| 650 |
+
continue
|
| 651 |
+
|
| 652 |
+
if not parsed_items_list:
|
| 653 |
+
print("No valid items were parsed!")
|
| 654 |
+
return None
|
| 655 |
+
|
| 656 |
+
print(f"\nFinal results:")
|
| 657 |
+
print(f"Total items processed: {len(items_list)}")
|
| 658 |
+
print(f"Successfully parsed items: {len(parsed_items_list)}")
|
| 659 |
+
|
| 660 |
+
df = pd.DataFrame(parsed_items_list)
|
| 661 |
+
print(f"DataFrame columns: {df.columns.tolist()}")
|
| 662 |
+
print(f"DataFrame shape: {df.shape}")
|
| 663 |
+
return df
|
| 664 |
+
|
| 665 |
except OmekaSClientError as e:
|
| 666 |
+
print(f"Omeka client error: {str(e)}")
|
| 667 |
+
return None
|
| 668 |
except Exception as e:
|
| 669 |
+
print(f"Unexpected error: {str(e)}")
|
| 670 |
+
print(f"Error type: {type(e)}")
|
| 671 |
+
import traceback
|
| 672 |
+
print(f"Traceback:\n{traceback.format_exc()}")
|
| 673 |
+
return None
|
| 674 |
|
| 675 |
def create_umap_plot(df):
|
| 676 |
coords = np.array(df["umap_embeddings"].tolist())
|
| 677 |
fig = px.scatter(
|
| 678 |
+
df,
|
| 679 |
+
x=coords[:, 0],
|
| 680 |
+
y=coords[:, 1],
|
| 681 |
+
color="Topic", # Start with top-level topics
|
| 682 |
+
custom_data=[df["id"], df["item_id"], df["images_urls"], df["Title"], df["Description"]],
|
| 683 |
hover_data=None,
|
| 684 |
+
title="UMAP Projection with HDBSCAN Topics",
|
| 685 |
+
color_discrete_sequence=px.colors.qualitative.D3,
|
| 686 |
+
width=900,
|
| 687 |
+
height=700,
|
| 688 |
)
|
| 689 |
+
# Update marker style
|
| 690 |
fig.update_traces(
|
| 691 |
+
marker=dict(
|
| 692 |
+
size=12, # Larger points
|
| 693 |
+
opacity=0.8, # Slight transparency
|
| 694 |
+
line=dict(width=0), # Remove borders
|
| 695 |
+
symbol='circle'
|
| 696 |
+
),
|
| 697 |
+
hoverinfo='none', # Disable native hover
|
| 698 |
+
hovertemplate=None
|
| 699 |
+
#hovertemplate="<b>%{customdata[1]}</b><br><img src='%{customdata[0]}' height='150'><extra></extra>"
|
| 700 |
+
)
|
| 701 |
+
|
| 702 |
+
# Convert to a go.Figure object to access additional configuration
|
| 703 |
+
fig = go.Figure(fig)
|
| 704 |
+
|
| 705 |
+
# Update layout including scroll zoom
|
| 706 |
+
fig.update_layout(
|
| 707 |
+
plot_bgcolor='white',
|
| 708 |
+
paper_bgcolor='white',
|
| 709 |
+
height=700,
|
| 710 |
+
margin=dict(t=30, b=30, l=30, r=30),
|
| 711 |
+
showlegend=False,
|
| 712 |
+
legend=dict(
|
| 713 |
+
yanchor="top",
|
| 714 |
+
y=0.99,
|
| 715 |
+
xanchor="right",
|
| 716 |
+
x=0.99,
|
| 717 |
+
bgcolor='rgba(255,255,255,0.8)',
|
| 718 |
+
bordercolor='rgba(0,0,0,0)'
|
| 719 |
+
),
|
| 720 |
+
xaxis=dict(
|
| 721 |
+
showgrid=False,
|
| 722 |
+
zeroline=False,
|
| 723 |
+
showline=False,
|
| 724 |
+
showticklabels=False,
|
| 725 |
+
fixedrange=False
|
| 726 |
+
),
|
| 727 |
+
yaxis=dict(
|
| 728 |
+
showgrid=False,
|
| 729 |
+
zeroline=False,
|
| 730 |
+
showline=False,
|
| 731 |
+
showticklabels=False,
|
| 732 |
+
fixedrange=False
|
| 733 |
+
),
|
| 734 |
+
dragmode='pan',
|
| 735 |
+
modebar_add=[
|
| 736 |
+
'zoom',
|
| 737 |
+
'pan',
|
| 738 |
+
'zoomIn',
|
| 739 |
+
'zoomOut',
|
| 740 |
+
'resetScale'
|
| 741 |
+
],
|
| 742 |
)
|
| 743 |
+
|
| 744 |
return fig, f"Loaded {len(df)} items and projected into 2D."
|
| 745 |
|
| 746 |
if __name__ == "__main__":
|
| 747 |
+
app.run(port=7860)
|