Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,58 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import gradio as gr
|
| 3 |
+
from diffusers import DiffusionPipeline
|
| 4 |
+
import torch
|
| 5 |
+
|
| 6 |
+
# === Configure cache directory ===
|
| 7 |
+
cache_dir = os.path.expanduser("~/Downloads/Openking")
|
| 8 |
+
os.makedirs(cache_dir, exist_ok=True)
|
| 9 |
+
|
| 10 |
+
# Set Hugging Face cache environment variables
|
| 11 |
+
os.environ["HF_HOME"] = cache_dir
|
| 12 |
+
os.environ["HF_HUB_CACHE"] = cache_dir
|
| 13 |
+
os.environ["HF_DATASETS_CACHE"] = cache_dir
|
| 14 |
+
|
| 15 |
+
# === Load Hugging Face token from secrets (required for private models) ===
|
| 16 |
+
# In Hugging Face Spaces, store your token as a secret named "HF_TOKEN"
|
| 17 |
+
hf_token = os.getenv("HF_TOKEN")
|
| 18 |
+
if not hf_token:
|
| 19 |
+
raise ValueError("Please set your Hugging Face token as a secret named 'HF_TOKEN' in your Space settings.")
|
| 20 |
+
|
| 21 |
+
# === Load the model ===
|
| 22 |
+
model_id = "Wan-AI/Wan2.1-T2V-1.3B-Diffusers"
|
| 23 |
+
|
| 24 |
+
try:
|
| 25 |
+
pipe = DiffusionPipeline.from_pretrained(
|
| 26 |
+
model_id,
|
| 27 |
+
use_auth_token=hf_token,
|
| 28 |
+
cache_dir=cache_dir,
|
| 29 |
+
torch_dtype=torch.float16,
|
| 30 |
+
variant="fp16"
|
| 31 |
+
)
|
| 32 |
+
pipe = pipe.to("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
+
except Exception as e:
|
| 34 |
+
raise RuntimeError(f"Failed to load model: {e}")
|
| 35 |
+
|
| 36 |
+
# === Gradio interface ===
|
| 37 |
+
def generate_video(prompt: str, num_inference_steps: int = 50):
|
| 38 |
+
try:
|
| 39 |
+
# Note: Adjust this call based on the actual model's inference API.
|
| 40 |
+
# Since this is a text-to-video model, the exact method may vary.
|
| 41 |
+
# This is a placeholder—check the model card for correct usage.
|
| 42 |
+
video_frames = pipe(prompt, num_inference_steps=num_inference_steps).frames
|
| 43 |
+
# For now, return a placeholder message
|
| 44 |
+
return f"Generated video for: '{prompt}' with {num_inference_steps} steps. (Output handling depends on model output format.)"
|
| 45 |
+
except Exception as e:
|
| 46 |
+
return f"Error: {str(e)}"
|
| 47 |
+
|
| 48 |
+
with gr.Blocks() as demo:
|
| 49 |
+
gr.Markdown("# 🎥 Wan2.1 Text-to-Video Generator")
|
| 50 |
+
prompt = gr.Textbox(label="Prompt", placeholder="A cat flying through space...")
|
| 51 |
+
steps = gr.Slider(10, 100, value=50, label="Inference Steps")
|
| 52 |
+
output = gr.Textbox(label="Result")
|
| 53 |
+
btn = gr.Button("Generate Video")
|
| 54 |
+
btn.click(generate_video, inputs=[prompt, steps], outputs=output)
|
| 55 |
+
|
| 56 |
+
# Launch app
|
| 57 |
+
if __name__ == "__main__":
|
| 58 |
+
demo.launch()
|