Update app.py
Browse files
app.py
CHANGED
|
@@ -1,37 +1,42 @@
|
|
| 1 |
import torch
|
| 2 |
-
import torchaudio
|
| 3 |
import gradio as gr
|
| 4 |
-
import time
|
| 5 |
import numpy as np
|
| 6 |
import scipy.io.wavfile
|
| 7 |
-
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline
|
| 8 |
|
| 9 |
-
# β
1οΈβ£
|
| 10 |
device = "cpu"
|
| 11 |
torch_dtype = torch.float32 # Use CPU-friendly float type
|
| 12 |
-
MODEL_NAME = "openai/whisper-
|
| 13 |
|
| 14 |
-
# β
2οΈβ£
|
|
|
|
|
|
|
|
|
|
| 15 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 16 |
-
MODEL_NAME, torch_dtype=torch_dtype, use_safetensors=True
|
| 17 |
)
|
| 18 |
model.to(device)
|
| 19 |
|
| 20 |
-
# β
|
| 21 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 22 |
-
processor.feature_extractor.sampling_rate = 16000 # β
Set correct sampling rate
|
| 23 |
|
|
|
|
| 24 |
pipe = pipeline(
|
| 25 |
task="automatic-speech-recognition",
|
| 26 |
model=model,
|
| 27 |
tokenizer=processor.tokenizer,
|
| 28 |
feature_extractor=processor.feature_extractor,
|
| 29 |
-
chunk_length_s=
|
| 30 |
torch_dtype=torch_dtype,
|
| 31 |
device=device,
|
|
|
|
| 32 |
)
|
| 33 |
|
| 34 |
-
# β
|
| 35 |
def stream_transcribe(stream, new_chunk):
|
| 36 |
start_time = time.time()
|
| 37 |
try:
|
|
@@ -44,18 +49,17 @@ def stream_transcribe(stream, new_chunk):
|
|
| 44 |
y = y.astype(np.float32)
|
| 45 |
y /= np.max(np.abs(y))
|
| 46 |
|
| 47 |
-
# β
Resample audio to 16kHz using torchaudio
|
| 48 |
y_tensor = torch.tensor(y)
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
# β
Append to Stream
|
| 53 |
if stream is not None:
|
| 54 |
stream = np.concatenate([stream, y_resampled])
|
| 55 |
else:
|
| 56 |
stream = y_resampled
|
| 57 |
|
| 58 |
-
# β
Run Transcription
|
| 59 |
transcription = pipe({"sampling_rate": 16000, "raw": stream})["text"]
|
| 60 |
latency = time.time() - start_time
|
| 61 |
|
|
@@ -65,17 +69,16 @@ def stream_transcribe(stream, new_chunk):
|
|
| 65 |
print(f"Error: {e}")
|
| 66 |
return stream, str(e), "Error"
|
| 67 |
|
| 68 |
-
# β
|
| 69 |
def transcribe(inputs, previous_transcription):
|
| 70 |
start_time = time.time()
|
| 71 |
try:
|
| 72 |
# β
Convert file input to correct format
|
| 73 |
sample_rate, audio_data = inputs
|
| 74 |
|
| 75 |
-
# β
Resample
|
| 76 |
audio_tensor = torch.tensor(audio_data)
|
| 77 |
-
|
| 78 |
-
resampled_audio = resampler(audio_tensor).numpy()
|
| 79 |
|
| 80 |
transcription = pipe({"sampling_rate": 16000, "raw": resampled_audio})["text"]
|
| 81 |
|
|
@@ -88,14 +91,14 @@ def transcribe(inputs, previous_transcription):
|
|
| 88 |
print(f"Error: {e}")
|
| 89 |
return previous_transcription, "Error"
|
| 90 |
|
| 91 |
-
# β
|
| 92 |
def clear():
|
| 93 |
return ""
|
| 94 |
|
| 95 |
-
# β
|
| 96 |
with gr.Blocks() as microphone:
|
| 97 |
-
gr.Markdown(f"# Whisper
|
| 98 |
-
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for ultra-fast speech-to-text.")
|
| 99 |
|
| 100 |
with gr.Row():
|
| 101 |
input_audio_microphone = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
|
|
@@ -112,10 +115,10 @@ with gr.Blocks() as microphone:
|
|
| 112 |
)
|
| 113 |
clear_button.click(clear, outputs=[output])
|
| 114 |
|
| 115 |
-
# β
|
| 116 |
with gr.Blocks() as file:
|
| 117 |
gr.Markdown(f"# Upload Audio File for Transcription π΅")
|
| 118 |
-
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for
|
| 119 |
|
| 120 |
with gr.Row():
|
| 121 |
input_audio = gr.Audio(sources=["upload"], type="numpy")
|
|
@@ -129,10 +132,10 @@ with gr.Blocks() as file:
|
|
| 129 |
submit_button.click(transcribe, [input_audio, output], [output, latency_textbox])
|
| 130 |
clear_button.click(clear, outputs=[output])
|
| 131 |
|
| 132 |
-
# β
|
| 133 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
| 134 |
gr.TabbedInterface([microphone, file], ["Microphone", "Upload Audio"])
|
| 135 |
|
| 136 |
-
# β
1οΈβ£
|
| 137 |
if __name__ == "__main__":
|
| 138 |
demo.launch()
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import torchaudio
|
| 3 |
import gradio as gr
|
| 4 |
+
import time
|
| 5 |
import numpy as np
|
| 6 |
import scipy.io.wavfile
|
| 7 |
+
from transformers import AutoModelForSpeechSeq2Seq, AutoProcessor, pipeline, BitsAndBytesConfig
|
| 8 |
|
| 9 |
+
# β
1οΈβ£ Optimize Model Selection
|
| 10 |
device = "cpu"
|
| 11 |
torch_dtype = torch.float32 # Use CPU-friendly float type
|
| 12 |
+
MODEL_NAME = "openai/whisper-small" # β
Switched to "small" for better accuracy
|
| 13 |
|
| 14 |
+
# β
2οΈβ£ Enable Quantization (Reduces Memory Usage, Speeds Up Inference)
|
| 15 |
+
quantization_config = BitsAndBytesConfig(load_in_8bit=True)
|
| 16 |
+
|
| 17 |
+
# β
3οΈβ£ Load Whisper Model on CPU with Optimized Settings
|
| 18 |
model = AutoModelForSpeechSeq2Seq.from_pretrained(
|
| 19 |
+
MODEL_NAME, quantization_config=quantization_config, torch_dtype=torch_dtype, use_safetensors=True
|
| 20 |
)
|
| 21 |
model.to(device)
|
| 22 |
|
| 23 |
+
# β
4οΈβ£ Load Processor & Set Default Sampling Rate
|
| 24 |
processor = AutoProcessor.from_pretrained(MODEL_NAME)
|
| 25 |
+
processor.feature_extractor.sampling_rate = 16000 # β
Set correct sampling rate
|
| 26 |
|
| 27 |
+
# β
5οΈβ£ Optimized Pipeline with Beam Search for Better Accuracy
|
| 28 |
pipe = pipeline(
|
| 29 |
task="automatic-speech-recognition",
|
| 30 |
model=model,
|
| 31 |
tokenizer=processor.tokenizer,
|
| 32 |
feature_extractor=processor.feature_extractor,
|
| 33 |
+
chunk_length_s=5, # β
Increase chunk size for better performance
|
| 34 |
torch_dtype=torch_dtype,
|
| 35 |
device=device,
|
| 36 |
+
generate_kwargs={"num_beams": 5, "language": "en"}, # β
Beam search for better accuracy
|
| 37 |
)
|
| 38 |
|
| 39 |
+
# β
6οΈβ£ Real-Time Streaming Transcription (Microphone)
|
| 40 |
def stream_transcribe(stream, new_chunk):
|
| 41 |
start_time = time.time()
|
| 42 |
try:
|
|
|
|
| 49 |
y = y.astype(np.float32)
|
| 50 |
y /= np.max(np.abs(y))
|
| 51 |
|
| 52 |
+
# β
Resample audio to 16kHz using optimized torchaudio method
|
| 53 |
y_tensor = torch.tensor(y)
|
| 54 |
+
y_resampled = torchaudio.functional.resample(y_tensor, orig_freq=sr, new_freq=16000).numpy()
|
| 55 |
+
|
|
|
|
| 56 |
# β
Append to Stream
|
| 57 |
if stream is not None:
|
| 58 |
stream = np.concatenate([stream, y_resampled])
|
| 59 |
else:
|
| 60 |
stream = y_resampled
|
| 61 |
|
| 62 |
+
# β
Run Transcription with Optimized Parameters
|
| 63 |
transcription = pipe({"sampling_rate": 16000, "raw": stream})["text"]
|
| 64 |
latency = time.time() - start_time
|
| 65 |
|
|
|
|
| 69 |
print(f"Error: {e}")
|
| 70 |
return stream, str(e), "Error"
|
| 71 |
|
| 72 |
+
# β
7οΈβ£ Transcription for File Upload
|
| 73 |
def transcribe(inputs, previous_transcription):
|
| 74 |
start_time = time.time()
|
| 75 |
try:
|
| 76 |
# β
Convert file input to correct format
|
| 77 |
sample_rate, audio_data = inputs
|
| 78 |
|
| 79 |
+
# β
Resample using torchaudio (optimized)
|
| 80 |
audio_tensor = torch.tensor(audio_data)
|
| 81 |
+
resampled_audio = torchaudio.functional.resample(audio_tensor, orig_freq=sample_rate, new_freq=16000).numpy()
|
|
|
|
| 82 |
|
| 83 |
transcription = pipe({"sampling_rate": 16000, "raw": resampled_audio})["text"]
|
| 84 |
|
|
|
|
| 91 |
print(f"Error: {e}")
|
| 92 |
return previous_transcription, "Error"
|
| 93 |
|
| 94 |
+
# β
8οΈβ£ Clear Function
|
| 95 |
def clear():
|
| 96 |
return ""
|
| 97 |
|
| 98 |
+
# β
9οΈβ£ Gradio Interface (Microphone Streaming)
|
| 99 |
with gr.Blocks() as microphone:
|
| 100 |
+
gr.Markdown(f"# Whisper Small - Real-Time Transcription (Optimized CPU) ποΈ")
|
| 101 |
+
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for ultra-fast speech-to-text with better accuracy.")
|
| 102 |
|
| 103 |
with gr.Row():
|
| 104 |
input_audio_microphone = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
|
|
|
|
| 115 |
)
|
| 116 |
clear_button.click(clear, outputs=[output])
|
| 117 |
|
| 118 |
+
# β
π Gradio Interface (File Upload)
|
| 119 |
with gr.Blocks() as file:
|
| 120 |
gr.Markdown(f"# Upload Audio File for Transcription π΅")
|
| 121 |
+
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for better transcription accuracy.")
|
| 122 |
|
| 123 |
with gr.Row():
|
| 124 |
input_audio = gr.Audio(sources=["upload"], type="numpy")
|
|
|
|
| 132 |
submit_button.click(transcribe, [input_audio, output], [output, latency_textbox])
|
| 133 |
clear_button.click(clear, outputs=[output])
|
| 134 |
|
| 135 |
+
# β
1οΈβ£1οΈβ£ Final Gradio App
|
| 136 |
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
| 137 |
gr.TabbedInterface([microphone, file], ["Microphone", "Upload Audio"])
|
| 138 |
|
| 139 |
+
# β
1οΈβ£2οΈβ£ Run Gradio Locally
|
| 140 |
if __name__ == "__main__":
|
| 141 |
demo.launch()
|