Update app.py
Browse files
app.py
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
import torch
|
|
|
|
| 2 |
import gradio as gr
|
| 3 |
import time
|
| 4 |
import numpy as np
|
|
@@ -27,6 +28,7 @@ pipe = pipeline(
|
|
| 27 |
chunk_length_s=2, # β
Process in 2-second chunks for ultra-low latency
|
| 28 |
torch_dtype=torch_dtype,
|
| 29 |
device=device,
|
|
|
|
| 30 |
)
|
| 31 |
|
| 32 |
# β
4οΈβ£ Real-Time Streaming Transcription (Microphone)
|
|
@@ -42,84 +44,4 @@ def stream_transcribe(stream, new_chunk):
|
|
| 42 |
y = y.astype(np.float32)
|
| 43 |
y /= np.max(np.abs(y))
|
| 44 |
|
| 45 |
-
# β
|
| 46 |
-
if stream is not None:
|
| 47 |
-
stream = np.concatenate([stream, y])
|
| 48 |
-
else:
|
| 49 |
-
stream = y
|
| 50 |
-
|
| 51 |
-
# β
Run Transcription
|
| 52 |
-
transcription = pipe({"sampling_rate": sr, "raw": stream})["text"]
|
| 53 |
-
latency = time.time() - start_time
|
| 54 |
-
|
| 55 |
-
return stream, transcription, f"{latency:.2f} sec"
|
| 56 |
-
|
| 57 |
-
except Exception as e:
|
| 58 |
-
print(f"Error: {e}")
|
| 59 |
-
return stream, str(e), "Error"
|
| 60 |
-
|
| 61 |
-
# β
5οΈβ£ Transcription for File Upload
|
| 62 |
-
def transcribe(inputs, previous_transcription):
|
| 63 |
-
start_time = time.time()
|
| 64 |
-
try:
|
| 65 |
-
# β
Convert file input to correct format
|
| 66 |
-
sample_rate, audio_data = inputs
|
| 67 |
-
transcription = pipe({"sampling_rate": sample_rate, "raw": audio_data})["text"]
|
| 68 |
-
|
| 69 |
-
previous_transcription += transcription
|
| 70 |
-
latency = time.time() - start_time
|
| 71 |
-
|
| 72 |
-
return previous_transcription, f"{latency:.2f} sec"
|
| 73 |
-
|
| 74 |
-
except Exception as e:
|
| 75 |
-
print(f"Error: {e}")
|
| 76 |
-
return previous_transcription, "Error"
|
| 77 |
-
|
| 78 |
-
# β
6οΈβ£ Clear Function
|
| 79 |
-
def clear():
|
| 80 |
-
return ""
|
| 81 |
-
|
| 82 |
-
# β
7οΈβ£ Gradio Interface (Microphone Streaming)
|
| 83 |
-
with gr.Blocks() as microphone:
|
| 84 |
-
gr.Markdown(f"# Whisper Tiny - Real-Time Transcription (CPU) ποΈ")
|
| 85 |
-
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for ultra-fast speech-to-text.")
|
| 86 |
-
|
| 87 |
-
with gr.Row():
|
| 88 |
-
input_audio_microphone = gr.Audio(sources=["microphone"], type="numpy", streaming=True)
|
| 89 |
-
output = gr.Textbox(label="Live Transcription", value="")
|
| 90 |
-
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0")
|
| 91 |
-
|
| 92 |
-
with gr.Row():
|
| 93 |
-
clear_button = gr.Button("Clear Output")
|
| 94 |
-
|
| 95 |
-
state = gr.State()
|
| 96 |
-
input_audio_microphone.stream(
|
| 97 |
-
stream_transcribe, [state, input_audio_microphone],
|
| 98 |
-
[state, output, latency_textbox], time_limit=30, stream_every=1
|
| 99 |
-
)
|
| 100 |
-
clear_button.click(clear, outputs=[output])
|
| 101 |
-
|
| 102 |
-
# β
8οΈβ£ Gradio Interface (File Upload)
|
| 103 |
-
with gr.Blocks() as file:
|
| 104 |
-
gr.Markdown(f"# Upload Audio File for Transcription π΅")
|
| 105 |
-
gr.Markdown(f"Using [{MODEL_NAME}](https://huggingface.co/{MODEL_NAME}) for speech-to-text.")
|
| 106 |
-
|
| 107 |
-
with gr.Row():
|
| 108 |
-
input_audio = gr.Audio(sources=["upload"], type="numpy")
|
| 109 |
-
output = gr.Textbox(label="Transcription", value="")
|
| 110 |
-
latency_textbox = gr.Textbox(label="Latency (seconds)", value="0.0")
|
| 111 |
-
|
| 112 |
-
with gr.Row():
|
| 113 |
-
submit_button = gr.Button("Submit")
|
| 114 |
-
clear_button = gr.Button("Clear Output")
|
| 115 |
-
|
| 116 |
-
submit_button.click(transcribe, [input_audio, output], [output, latency_textbox])
|
| 117 |
-
clear_button.click(clear, outputs=[output])
|
| 118 |
-
|
| 119 |
-
# β
9οΈβ£ Final Gradio App (Supports Microphone & File Upload)
|
| 120 |
-
with gr.Blocks(theme=gr.themes.Ocean()) as demo:
|
| 121 |
-
gr.TabbedInterface([microphone, file], ["Microphone", "Upload Audio"])
|
| 122 |
-
|
| 123 |
-
# β
1οΈβ£0οΈβ£ Run Gradio Locally
|
| 124 |
-
if __name__ == "__main__":
|
| 125 |
-
demo.launch()
|
|
|
|
| 1 |
import torch
|
| 2 |
+
import torchaudio # β
Added torchaudio to handle audio resampling
|
| 3 |
import gradio as gr
|
| 4 |
import time
|
| 5 |
import numpy as np
|
|
|
|
| 28 |
chunk_length_s=2, # β
Process in 2-second chunks for ultra-low latency
|
| 29 |
torch_dtype=torch_dtype,
|
| 30 |
device=device,
|
| 31 |
+
sampling_rate=16000, # β
Explicitly set sampling rate to avoid resampling issues
|
| 32 |
)
|
| 33 |
|
| 34 |
# β
4οΈβ£ Real-Time Streaming Transcription (Microphone)
|
|
|
|
| 44 |
y = y.astype(np.float32)
|
| 45 |
y /= np.max(np.abs(y))
|
| 46 |
|
| 47 |
+
# β
Resample audio
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|