Update app.py
Browse files
app.py
CHANGED
|
@@ -1,5 +1,3 @@
|
|
| 1 |
-
#实现功能:1忽略奇怪符号,直接删掉 2.怎么引用fine-tune的model
|
| 2 |
-
|
| 3 |
import streamlit as st
|
| 4 |
from transformers import pipeline
|
| 5 |
import re
|
|
@@ -26,6 +24,20 @@ except ValueError as e:
|
|
| 26 |
st.error(f"Error loading classification model: {e}")
|
| 27 |
classifier_loaded = False
|
| 28 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
# Streamlit app title
|
| 30 |
st.title("Question Rephrase and Classification")
|
| 31 |
|
|
@@ -51,8 +63,10 @@ if st.button("Process"):
|
|
| 51 |
results = classifier(summarized_text)[0]
|
| 52 |
# Find the category with the highest score
|
| 53 |
max_score = max(results, key=lambda x: x['score'])
|
|
|
|
|
|
|
| 54 |
st.write("Rephrased Text:", summarized_text)
|
| 55 |
-
st.write("Category:",
|
| 56 |
st.write("Score:", max_score['score'])
|
| 57 |
except Exception as e:
|
| 58 |
st.error(f"Error during classification: {e}")
|
|
|
|
|
|
|
|
|
|
| 1 |
import streamlit as st
|
| 2 |
from transformers import pipeline
|
| 3 |
import re
|
|
|
|
| 24 |
st.error(f"Error loading classification model: {e}")
|
| 25 |
classifier_loaded = False
|
| 26 |
|
| 27 |
+
# Dictionary to map numerical labels to real labels
|
| 28 |
+
label_mapping = {
|
| 29 |
+
0: "Society & Culture",
|
| 30 |
+
1: "Science & Mathematics",
|
| 31 |
+
2: "Health",
|
| 32 |
+
3: "Education & Reference",
|
| 33 |
+
4: "Computers & Internet",
|
| 34 |
+
5: "Sports",
|
| 35 |
+
6: "Business & Finance",
|
| 36 |
+
7: "Entertainment & Music",
|
| 37 |
+
8: "Family & Relationships",
|
| 38 |
+
9: "Politics & Government"
|
| 39 |
+
}
|
| 40 |
+
|
| 41 |
# Streamlit app title
|
| 42 |
st.title("Question Rephrase and Classification")
|
| 43 |
|
|
|
|
| 63 |
results = classifier(summarized_text)[0]
|
| 64 |
# Find the category with the highest score
|
| 65 |
max_score = max(results, key=lambda x: x['score'])
|
| 66 |
+
predicted_label_index = int(max_score['label'].split('_')[-1]) # Assuming labels are like "LABEL_0", "LABEL_1", etc.
|
| 67 |
+
predicted_label = label_mapping[predicted_label_index]
|
| 68 |
st.write("Rephrased Text:", summarized_text)
|
| 69 |
+
st.write("Category:", predicted_label)
|
| 70 |
st.write("Score:", max_score['score'])
|
| 71 |
except Exception as e:
|
| 72 |
st.error(f"Error during classification: {e}")
|