File size: 13,199 Bytes
d062c42
 
 
 
 
c5fe65e
 
d062c42
 
c5fe65e
 
 
 
 
bb19335
c5fe65e
 
 
b9073ba
d062c42
 
 
 
 
 
 
c5fe65e
d062c42
 
 
 
 
 
 
 
 
c5fe65e
d062c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c859c2b
d062c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fe65e
d062c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fe65e
d062c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fe65e
d062c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fe65e
d062c42
 
 
 
 
c5fe65e
d062c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c5fe65e
d062c42
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d55450
 
d062c42
 
 
 
 
 
 
 
c5fe65e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
import streamlit as st
import cv2
import numpy as np
import tensorflow as tf
from PIL import Image
import matplotlib.pyplot as plt
import seaborn as sns
import pandas as pd
import mediapipe as mp
import tempfile
import os
import json
import time
from typing import List, Dict, Optional
import plotly.express as px
import plotly.graph_objects as go
from datetime import datetime


st.set_page_config(
    page_title="ASL Recognition App",
    page_icon="🀟",
    layout="wide",
    initial_sidebar_state="expanded"
)


st.markdown("""
<style>
    .main-header {
        font-size: 3rem;
        color: #1f77b4;
        text-align: center;
        margin-bottom: 2rem;
    }
    .prediction-box {
        background-color: #262730;  /* dark gray-blue */
        padding: 1rem;
        border-radius: 10px;
        border-left: 5px solid #1f77b4;
        margin: 1rem 0;
    }
    .confidence-high {
        color: #28a745;
        font-weight: bold;
    }
    .confidence-medium {
        color: #ffc107;
        font-weight: bold;
    }
    .confidence-low {
        color: #dc3545;
        font-weight: bold;
    }
    .stButton > button {
        width: 100%;
        background-color: #1f77b4;
        color: white;
        border-radius: 10px;
    }
</style>
""", unsafe_allow_html=True)

@st.cache_resource
def load_model():
    return tf.keras.models.load_model("finetune_epoch_01_valacc_0.92.h5")

MODEL = load_model()

class ASLStreamlitApp:
    def __init__(self):
        self.asl_classes = [
            'A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I', 'J', 'K', 'L', 'M',
            'N', 'O', 'P', 'Q', 'R', 'S', 'T', 'U', 'V', 'W', 'X', 'Y', 'Z',
            'SPACE', 'DELETE', 'NOTHING'
        ]
        self.mp_hands = mp.solutions.hands
        self.hands = self.mp_hands.Hands(
            static_image_mode=True,
            max_num_hands=1,
            min_detection_confidence=0.5
        )
        self.mp_drawing = mp.solutions.drawing_utils

        if 'prediction_history' not in st.session_state:
            st.session_state.prediction_history = []
        if 'current_word' not in st.session_state:
            st.session_state.current_word = ""

    def preprocess_image(self, image: np.ndarray) -> np.ndarray:
        if image.shape[:2] != (224, 224):
            image = cv2.resize(image, (224, 224))
        image = image.astype(np.float32) / 255.0
        image = np.expand_dims(image, axis=0)
        return image

    def extract_hand_region(self, image: np.ndarray) -> Optional[np.ndarray]:
        try:
            rgb_image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
            results = self.hands.process(rgb_image)
            if results.multi_hand_landmarks:
                for hand_landmarks in results.multi_hand_landmarks:
                    h, w, _ = image.shape
                    x_coords = [landmark.x * w for landmark in hand_landmarks.landmark]
                    y_coords = [landmark.y * h for landmark in hand_landmarks.landmark]
                    x_min, x_max = int(min(x_coords)), int(max(x_coords))
                    y_min, y_max = int(min(y_coords)), int(max(y_coords))
                    padding = 40
                    x_min = max(0, x_min - padding)
                    y_min = max(0, y_min - padding)
                    x_max = min(w, x_max + padding)
                    y_max = min(h, y_max + padding)
                    hand_region = image[y_min:y_max, x_min:x_max]
                    if hand_region.size > 0:
                        return hand_region, (x_min, y_min, x_max, y_max)
            return None, None
        except Exception as e:
            st.error(f"Error extracting hand: {str(e)}")
            return None, None

    def predict_sign(self, image: np.ndarray, use_hand_detection: bool = True) -> Dict:
        if MODEL is None:
            st.error("Model not loaded!")
            return {}
        try:
            original_image = image.copy()
            hand_detected = False
            bbox = None
            if use_hand_detection:
                hand_region, bbox = self.extract_hand_region(image)
                if hand_region is not None:
                    image = hand_region
                    hand_detected = True
                else:
                    st.warning("No hand detected, using full image")
            processed_image = self.preprocess_image(image)
            predictions = MODEL.predict(processed_image, verbose=0)
            top_indices = np.argsort(predictions[0])[::-1][:5]
            results = {
                'predictions': predictions[0],
                'predicted_class': self.asl_classes[top_indices[0]],
                'confidence': float(predictions[0][top_indices[0]]),
                'top_predictions': [
                    {
                        'class': self.asl_classes[idx],
                        'confidence': float(predictions[0][idx])
                    }
                    for idx in top_indices
                ],
                'hand_detected': hand_detected,
                'bbox': bbox,
                'original_image': original_image,
                'processed_image': image
            }
            return results
        except Exception as e:
            st.error(f"Prediction error: {str(e)}")
            return {}

    def display_prediction_results(self, results: Dict):
        if not results:
            return
        predicted_class = results['predicted_class']
        confidence = results['confidence']
        if confidence > 0.8:
            conf_class = "confidence-high"
        elif confidence > 0.5:
            conf_class = "confidence-medium"
        else:
            conf_class = "confidence-low"
        st.markdown(f"""
        <div class="prediction-box">
            <h2>🎯 Prediction: {predicted_class}</h2>
            <p class="{conf_class}">Confidence: {confidence:.2%}</p>
            <p>Hand Detected: {'βœ… Yes' if results['hand_detected'] else '❌ No'}</p>
        </div>
        """, unsafe_allow_html=True)
        top_preds = results['top_predictions']
        df_preds = pd.DataFrame(top_preds)
        fig = px.bar(
            df_preds,
            x='confidence',
            y='class',
            orientation='h',
            title="Top 5 Predictions",
            color='confidence',
            color_continuous_scale='viridis'
        )
        fig.update_layout(height=300)
        st.plotly_chart(fig, use_container_width=True)
        timestamp = datetime.now().strftime("%H:%M:%S")
        st.session_state.prediction_history.append({
            'timestamp': timestamp,
            'prediction': predicted_class,
            'confidence': confidence
        })

    def display_image_with_detection(self, results: Dict):
        if not results or 'original_image' not in results:
            return
        col1, col2 = st.columns(2)
        with col1:
            st.subheader("Original Image")
            original = results['original_image']
            if results['hand_detected'] and results['bbox']:
                x_min, y_min, x_max, y_max = results['bbox']
                cv2.rectangle(original, (x_min, y_min), (x_max, y_max), (0, 255, 0), 3)
                cv2.putText(original, "Hand Detected", (x_min, y_min-10),
                           cv2.FONT_HERSHEY_SIMPLEX, 0.7, (0, 255, 0), 2)
            st.image(original, channels="BGR", use_column_width=True)
        with col2:
            st.subheader("Processed Region")
            processed = results['processed_image']
            st.image(processed, channels="BGR", use_column_width=True)

    def word_builder_interface(self):
        st.subheader("πŸ”€ Word Builder")
        col1, col2, col3 = st.columns([3, 1, 1])
        with col1:
            current_word = st.text_input(
                "Current Word:",
                value=st.session_state.current_word,
                key="word_display"
            )
            st.session_state.current_word = current_word
        with col2:
            if st.button("Clear Word"):
                st.session_state.current_word = ""
                st.experimental_rerun()
        with col3:
            if st.button("Save Word"):
                if st.session_state.current_word:
                    st.success(f"Saved: '{st.session_state.current_word}'")
                    # Save to file/db if needed

    def prediction_history_interface(self):
        st.subheader("πŸ“Š Prediction History")
        if st.session_state.prediction_history:
            df_history = pd.DataFrame(st.session_state.prediction_history)
            st.write("Recent Predictions:")
            st.dataframe(df_history.tail(10), use_container_width=True)
            if len(df_history) > 1:
                pred_counts = df_history['prediction'].value_counts().head(10)
                fig = px.pie(
                    values=pred_counts.values,
                    names=pred_counts.index,
                    title="Prediction Frequency"
                )
                st.plotly_chart(fig, use_container_width=True)
            if st.button("Clear History"):
                st.session_state.prediction_history = []
                st.experimental_rerun()
        else:
            st.info("No predictions yet. Upload an image to get started!")

    def run(self):
        st.markdown('<h1 class="main-header">🀟 ASL Alphabet Recognition</h1>',
                   unsafe_allow_html=True)
        with st.sidebar:
            st.header("βš™οΈ Settings")
            st.subheader("Detection Settings")
            use_hand_detection = st.checkbox("Use Hand Detection", value=True)
            confidence_threshold = st.slider("Confidence Threshold", 0.0, 1.0, 0.5, 0.05)
            st.subheader("ℹ️ About")
            st.info("""
            This app recognizes American Sign Language alphabet signs.
            **Features:**
            - Real-time hand detection
            - High-accuracy CNN models
            - Word building interface
            - Prediction history
            **Classes:** A-Z, SPACE, DELETE, NOTHING
            """)

        tab1, tab2, tab3, tab4 = st.tabs(["πŸ“· Image Recognition", "πŸŽ₯ Video Processing", "πŸ”€ Word Builder", "πŸ“Š History"])
        with tab1:
            st.header("Image Recognition")
            uploaded_file = st.file_uploader(
                "Upload an image",
                type=['png', 'jpg', 'jpeg'],
                help="Upload an image containing an ASL alphabet sign"
            )
            camera_image = st.camera_input("Or take a photo")
            image_to_process = uploaded_file or camera_image
            if image_to_process is not None:
                image = Image.open(image_to_process)
                image_array = np.array(image)
                if len(image_array.shape) == 3:
                    image_array = cv2.cvtColor(image_array, cv2.COLOR_RGB2BGR)
                if MODEL is not None:
                    with st.spinner("Making prediction..."):
                        results = self.predict_sign(image_array, use_hand_detection)
                    if results:
                        col1, col2 = st.columns([1, 1])
                        with col1:
                            self.display_prediction_results(results)
                        with col2:
                            self.display_image_with_detection(results)
                        if results['confidence'] > confidence_threshold:
                            predicted_class = results['predicted_class']
                            if st.button(f"Add '{predicted_class}' to word"):
                                if predicted_class == "SPACE":
                                    st.session_state.current_word += " "
                                elif predicted_class == "DELETE":
                                    if st.session_state.current_word:
                                        st.session_state.current_word = st.session_state.current_word[:-1]
                                elif predicted_class != "NOTHING":
                                    st.session_state.current_word += predicted_class
                                st.experimental_rerun()
                else:
                    st.warning("Model not loaded!")
        with tab2:
            st.header("Video Processing")
            st.info("Video processing feature - Upload a video file for frame-by-frame ASL recognition")
            video_file = st.file_uploader("Upload Video", type=['mp4', 'avi', 'mov'])
            if video_file is not None:
                st.video(video_file)
                if st.button("Process Video"):
                    st.info("Video processing functionality would go here")
        with tab3:
            self.word_builder_interface()
        with tab4:
            self.prediction_history_interface()
        st.markdown("---")
        st.markdown("""
        <div style='text-align: center; color: #666;'>
            Made with ❀️ using Streamlit | ASL Recognition System | 
            github.com/DurgeshRajput11
        </div>
        """, unsafe_allow_html=True)

def main():
    app = ASLStreamlitApp()
    app.run()

if __name__ == "__main__":
    main()