File size: 6,208 Bytes
a0d6949
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
# %%writefile text_processor.py
"""
DeltaFlow - Text Processor
Handles semantic expansion using Qwen2.5-0.5B-Instruct
Converts brief instructions into detailed motion descriptions
"""

import gc
import traceback
from typing import Optional

import torch
import ftfy
import sentencepiece
from transformers import AutoModelForCausalLM, AutoTokenizer


class TextProcessor:
    """
    Semantic expansion engine using Qwen2.5-0.5B.
    Transforms user inputs into motion-rich prompts for video generation.
    """

    MODEL_ID = "Qwen/Qwen2.5-0.5B-Instruct"
    MAX_OUTPUT_LENGTH = 100  # Token limit to ensure ~50 words

    def __init__(self, resource_manager: Optional[object] = None):
        """
        Initialize TextProcessor with optional resource management.

        Args:
            resource_manager: Optional resource manager instance
        """
        self.resource_manager = resource_manager

        # Determine device
        if resource_manager is not None:
            self.device = resource_manager.get_device()
        else:
            self.device = "cuda" if torch.cuda.is_available() else "cpu"

        self.model: Optional[AutoModelForCausalLM] = None
        self.tokenizer: Optional[AutoTokenizer] = None
        self.is_loaded = False

    def load_model(self) -> None:
        """Load Qwen model and tokenizer."""
        if self.is_loaded:
            print("⚠ TextProcessor already loaded, skipping...")
            return

        try:
            print("→ Loading Qwen2.5-0.5B-Instruct...")

            self.tokenizer = AutoTokenizer.from_pretrained(
                self.MODEL_ID,
                trust_remote_code=True
            )

            self.model = AutoModelForCausalLM.from_pretrained(
                self.MODEL_ID,
                torch_dtype=torch.bfloat16,
                device_map="auto",
                trust_remote_code=True
            )

            if self.resource_manager is not None:
                self.resource_manager.register_model("TextProcessor", self.model)

            self.is_loaded = True
            print("✓ TextProcessor loaded successfully")

        except Exception as e:
            print(f"✗ Error loading TextProcessor: {str(e)}")
            raise

    def unload_model(self) -> None:
        """Unload model and free GPU memory."""
        if not self.is_loaded:
            return

        try:
            if self.model is not None:
                self.model.to('cpu')
                del self.model
                self.model = None

            if self.tokenizer is not None:
                del self.tokenizer
                self.tokenizer = None

            if self.resource_manager is not None:
                self.resource_manager.unregister_model("TextProcessor")
                self.resource_manager.clear_cache(aggressive=True)
            else:
                gc.collect()
                if torch.cuda.is_available():
                    torch.cuda.empty_cache()

            self.is_loaded = False
            print("✓ TextProcessor unloaded")

        except Exception as e:
            print(f"⚠ Error during TextProcessor unload: {str(e)}")

    def expand_prompt(self, user_input: str) -> str:
        """
        Convert user's brief instruction into detailed motion description.

        Args:
            user_input: User's original instruction

        Returns:
            str: Expanded prompt for video generation (≤50 words)
        """
        if not self.is_loaded:
            raise RuntimeError("TextProcessor not loaded. Call load_model() first.")

        system_prompt = """You are a motion description expert. Convert the user's brief instruction into a detailed, dynamic prompt for video generation.

Focus on:
- Camera movements (pan, zoom, tilt, tracking)
- Subject actions and motions
- Scene dynamics and atmosphere
- Temporal flow and transitions

Keep output under 50 words. Use vivid, cinematic language. English only."""

        try:
            messages = [
                {"role": "system", "content": system_prompt},
                {"role": "user", "content": user_input}
            ]

            text = self.tokenizer.apply_chat_template(
                messages,
                tokenize=False,
                add_generation_prompt=True
            )

            model_inputs = self.tokenizer([text], return_tensors="pt").to(self.device)

            with torch.no_grad():
                generated_ids = self.model.generate(
                    **model_inputs,
                    max_new_tokens=self.MAX_OUTPUT_LENGTH,
                    do_sample=True,
                    temperature=0.7,
                    top_p=0.9,
                    repetition_penalty=1.1
                )

            generated_ids = [
                output_ids[len(input_ids):]
                for input_ids, output_ids in zip(model_inputs.input_ids, generated_ids)
            ]

            expanded_prompt = self.tokenizer.batch_decode(
                generated_ids,
                skip_special_tokens=True
            )[0].strip()

            # Enforce word limit
            words = expanded_prompt.split()
            if len(words) > 50:
                expanded_prompt = " ".join(words[:50]) + "..."

            print(f"✓ Prompt expanded: '{user_input}' → '{expanded_prompt}'")
            return expanded_prompt

        except Exception as e:
            print(f"✗ Error during prompt expansion: {str(e)}")
            return user_input

    def process(self, user_input: str, auto_unload: bool = True) -> str:
        """
        Main processing pipeline: load → expand → (optionally unload).

        Args:
            user_input: User's instruction
            auto_unload: Whether to unload model after processing

        Returns:
            str: Expanded prompt
        """
        try:
            if not self.is_loaded:
                self.load_model()

            expanded = self.expand_prompt(user_input)

            if auto_unload:
                self.unload_model()

            return expanded

        except Exception as e:
            print(f"✗ TextProcessor pipeline error: {str(e)}")
            return user_input