Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -234,7 +234,7 @@ def process_and_compare(file1, sheet1, file2, sheet2):
|
|
| 234 |
plt.savefig(file_path, format='png', bbox_inches='tight')
|
| 235 |
plt.close()
|
| 236 |
|
| 237 |
-
return
|
| 238 |
|
| 239 |
def find_sentences_with_keywords(text, keywords):
|
| 240 |
# Split text into sentences using regular expression to match sentence-ending punctuation
|
|
@@ -554,8 +554,14 @@ with gr.Blocks(theme='gradio/soft',js=js_func) as demo:
|
|
| 554 |
sheet = gr.Dropdown(choices=["GDP", "HICP", "RRE prices", "Unemployment", "CRE prices"], label="Select Sheet for File 1 and 2")
|
| 555 |
|
| 556 |
with gr.Column():
|
| 557 |
-
result = gr.Image(label="Comparison pLot")
|
| 558 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 559 |
def update_sheets(file):
|
| 560 |
return get_sheet_names(file)
|
| 561 |
|
|
@@ -587,7 +593,7 @@ with gr.Blocks(theme='gradio/soft',js=js_func) as demo:
|
|
| 587 |
inputs=[country_2_dropdown, sheet],
|
| 588 |
outputs=text_result_df2)
|
| 589 |
# Button to extract text from PDFs and perform sentiment analysis
|
| 590 |
-
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=[result,country_1_dropdown, country_2_dropdown])
|
| 591 |
b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])
|
| 592 |
|
| 593 |
|
|
|
|
| 234 |
plt.savefig(file_path, format='png', bbox_inches='tight')
|
| 235 |
plt.close()
|
| 236 |
|
| 237 |
+
return merged_df, f'Histogram of Difference between Adverse cumulative growth of {year2} and {year1} for {sheet1}', gr.update(choices=stored_df1.Country.values.tolist()), gr.update(choices=stored_df2.Country.values.tolist())
|
| 238 |
|
| 239 |
def find_sentences_with_keywords(text, keywords):
|
| 240 |
# Split text into sentences using regular expression to match sentence-ending punctuation
|
|
|
|
| 554 |
sheet = gr.Dropdown(choices=["GDP", "HICP", "RRE prices", "Unemployment", "CRE prices"], label="Select Sheet for File 1 and 2")
|
| 555 |
|
| 556 |
with gr.Column():
|
| 557 |
+
#result = gr.Image(label="Comparison pLot")
|
| 558 |
+
result = gr.BarPlot(
|
| 559 |
+
pd.DataFrame(columns=["Country", "Difference adverse cumulative growth"]),
|
| 560 |
+
x="Country",
|
| 561 |
+
y="Difference adverse cumulative growth",
|
| 562 |
+
color="Country",
|
| 563 |
+
x_bin=1,
|
| 564 |
+
)
|
| 565 |
def update_sheets(file):
|
| 566 |
return get_sheet_names(file)
|
| 567 |
|
|
|
|
| 593 |
inputs=[country_2_dropdown, sheet],
|
| 594 |
outputs=text_result_df2)
|
| 595 |
# Button to extract text from PDFs and perform sentiment analysis
|
| 596 |
+
b1.click(fn=process_and_compare, inputs=[file1, sheet, file2, sheet], outputs=[result, result.title,country_1_dropdown, country_2_dropdown])
|
| 597 |
b2.click(fn=process_pdfs_and_analyze_sentiment, inputs=[file1, file2, sheet], outputs=[sentiment_results_pdf1, sentiment_results_pdf2])
|
| 598 |
|
| 599 |
|