|
|
"""
|
|
|
"""
|
|
|
|
|
|
from typing import Any
|
|
|
from typing import Callable
|
|
|
from typing import ParamSpec
|
|
|
|
|
|
import spaces
|
|
|
import torch
|
|
|
from torch.utils._pytree import tree_map_only
|
|
|
from torchao.quantization import quantize_
|
|
|
from torchao.quantization import Float8DynamicActivationFloat8WeightConfig
|
|
|
from torchao.quantization import Int8WeightOnlyConfig
|
|
|
|
|
|
from optimization_utils import capture_component_call
|
|
|
from optimization_utils import aoti_compile
|
|
|
from optimization_utils import drain_module_parameters
|
|
|
|
|
|
|
|
|
P = ParamSpec('P')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LATENT_FRAMES_DIM = torch.export.Dim('num_latent_frames', min=8, max=81)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
LATENT_PATCHED_HEIGHT_DIM = torch.export.Dim('latent_patched_height', min=30, max=52)
|
|
|
LATENT_PATCHED_WIDTH_DIM = torch.export.Dim('latent_patched_width', min=30, max=52)
|
|
|
|
|
|
|
|
|
|
|
|
TRANSFORMER_DYNAMIC_SHAPES = {
|
|
|
'hidden_states': {
|
|
|
2: LATENT_FRAMES_DIM,
|
|
|
3: 2 * LATENT_PATCHED_HEIGHT_DIM,
|
|
|
4: 2 * LATENT_PATCHED_WIDTH_DIM,
|
|
|
},
|
|
|
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
INDUCTOR_CONFIGS = {
|
|
|
'conv_1x1_as_mm': True,
|
|
|
'epilogue_fusion': False,
|
|
|
'coordinate_descent_tuning': True,
|
|
|
'coordinate_descent_check_all_directions': True,
|
|
|
'max_autotune': True,
|
|
|
'triton.cudagraphs': True,
|
|
|
}
|
|
|
|
|
|
|
|
|
def optimize_pipeline_(pipeline: Callable[P, Any], *args: P.args, **kwargs: P.kwargs):
|
|
|
|
|
|
@spaces.GPU(duration=1500)
|
|
|
def compile_transformer():
|
|
|
|
|
|
|
|
|
pipeline.load_lora_weights(
|
|
|
"Kijai/WanVideo_comfy",
|
|
|
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
|
|
adapter_name="lightx2v"
|
|
|
)
|
|
|
kwargs_lora = {}
|
|
|
kwargs_lora["load_into_transformer_2"] = True
|
|
|
pipeline.load_lora_weights(
|
|
|
"Kijai/WanVideo_comfy",
|
|
|
weight_name="Lightx2v/lightx2v_I2V_14B_480p_cfg_step_distill_rank128_bf16.safetensors",
|
|
|
adapter_name="lightx2v_2", **kwargs_lora
|
|
|
)
|
|
|
pipeline.set_adapters(["lightx2v", "lightx2v_2"], adapter_weights=[1., 1.])
|
|
|
pipeline.fuse_lora(adapter_names=["lightx2v"], lora_scale=3., components=["transformer"])
|
|
|
pipeline.fuse_lora(adapter_names=["lightx2v_2"], lora_scale=1., components=["transformer_2"])
|
|
|
pipeline.unload_lora_weights()
|
|
|
|
|
|
|
|
|
with capture_component_call(pipeline, 'transformer') as call:
|
|
|
pipeline(*args, **kwargs)
|
|
|
|
|
|
dynamic_shapes = tree_map_only((torch.Tensor, bool), lambda t: None, call.kwargs)
|
|
|
dynamic_shapes |= TRANSFORMER_DYNAMIC_SHAPES
|
|
|
|
|
|
|
|
|
quantize_(pipeline.transformer, Float8DynamicActivationFloat8WeightConfig())
|
|
|
quantize_(pipeline.transformer_2, Float8DynamicActivationFloat8WeightConfig())
|
|
|
|
|
|
|
|
|
|
|
|
exported_1 = torch.export.export(
|
|
|
mod=pipeline.transformer,
|
|
|
args=call.args,
|
|
|
kwargs=call.kwargs,
|
|
|
dynamic_shapes=dynamic_shapes,
|
|
|
)
|
|
|
|
|
|
exported_2 = torch.export.export(
|
|
|
mod=pipeline.transformer_2,
|
|
|
args=call.args,
|
|
|
kwargs=call.kwargs,
|
|
|
dynamic_shapes=dynamic_shapes,
|
|
|
)
|
|
|
|
|
|
compiled_1 = aoti_compile(exported_1, INDUCTOR_CONFIGS)
|
|
|
compiled_2 = aoti_compile(exported_2, INDUCTOR_CONFIGS)
|
|
|
|
|
|
|
|
|
return compiled_1, compiled_2
|
|
|
|
|
|
|
|
|
|
|
|
quantize_(pipeline.text_encoder, Int8WeightOnlyConfig())
|
|
|
|
|
|
|
|
|
compiled_transformer_1, compiled_transformer_2 = compile_transformer()
|
|
|
|
|
|
|
|
|
|
|
|
pipeline.transformer.forward = compiled_transformer_1
|
|
|
drain_module_parameters(pipeline.transformer)
|
|
|
|
|
|
pipeline.transformer_2.forward = compiled_transformer_2
|
|
|
drain_module_parameters(pipeline.transformer_2) |