|
|
from diffusers_helper.hf_login import login
|
|
|
|
|
|
import os
|
|
|
|
|
|
os.environ['HF_HOME'] = os.path.abspath(os.path.realpath(os.path.join(os.path.dirname(__file__), './hf_download')))
|
|
|
|
|
|
import gradio as gr
|
|
|
import torch
|
|
|
import traceback
|
|
|
import einops
|
|
|
import safetensors.torch as sf
|
|
|
import numpy as np
|
|
|
import argparse
|
|
|
import random
|
|
|
import math
|
|
|
|
|
|
import decord
|
|
|
|
|
|
from tqdm import tqdm
|
|
|
|
|
|
import pathlib
|
|
|
|
|
|
from datetime import datetime
|
|
|
|
|
|
import imageio_ffmpeg
|
|
|
import tempfile
|
|
|
import shutil
|
|
|
import subprocess
|
|
|
import spaces
|
|
|
from PIL import Image
|
|
|
from diffusers import AutoencoderKLHunyuanVideo
|
|
|
from transformers import LlamaModel, CLIPTextModel, LlamaTokenizerFast, CLIPTokenizer
|
|
|
from diffusers_helper.hunyuan import encode_prompt_conds, vae_decode, vae_encode, vae_decode_fake
|
|
|
from diffusers_helper.utils import save_bcthw_as_mp4, crop_or_pad_yield_mask, soft_append_bcthw, resize_and_center_crop, state_dict_weighted_merge, state_dict_offset_merge, generate_timestamp
|
|
|
from diffusers_helper.models.hunyuan_video_packed import HunyuanVideoTransformer3DModelPacked
|
|
|
from diffusers_helper.pipelines.k_diffusion_hunyuan import sample_hunyuan
|
|
|
from diffusers_helper.memory import cpu, gpu, get_cuda_free_memory_gb, move_model_to_device_with_memory_preservation, offload_model_from_device_for_memory_preservation, fake_diffusers_current_device, DynamicSwapInstaller, unload_complete_models, load_model_as_complete
|
|
|
from diffusers_helper.thread_utils import AsyncStream, async_run
|
|
|
from diffusers_helper.gradio.progress_bar import make_progress_bar_css, make_progress_bar_html
|
|
|
from transformers import SiglipImageProcessor, SiglipVisionModel
|
|
|
from diffusers_helper.clip_vision import hf_clip_vision_encode
|
|
|
from diffusers_helper.bucket_tools import find_nearest_bucket
|
|
|
|
|
|
parser = argparse.ArgumentParser()
|
|
|
parser.add_argument('--share', action='store_true')
|
|
|
parser.add_argument("--server", type=str, default='0.0.0.0')
|
|
|
parser.add_argument("--port", type=int, required=False)
|
|
|
parser.add_argument("--inbrowser", action='store_true')
|
|
|
args = parser.parse_args()
|
|
|
|
|
|
print(args)
|
|
|
|
|
|
free_mem_gb = get_cuda_free_memory_gb(gpu)
|
|
|
high_vram = free_mem_gb > 60
|
|
|
|
|
|
print(f'Free VRAM {free_mem_gb} GB')
|
|
|
print(f'High-VRAM Mode: {high_vram}')
|
|
|
|
|
|
text_encoder = LlamaModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder', torch_dtype=torch.float16).cpu()
|
|
|
text_encoder_2 = CLIPTextModel.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='text_encoder_2', torch_dtype=torch.float16).cpu()
|
|
|
tokenizer = LlamaTokenizerFast.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer')
|
|
|
tokenizer_2 = CLIPTokenizer.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='tokenizer_2')
|
|
|
vae = AutoencoderKLHunyuanVideo.from_pretrained("hunyuanvideo-community/HunyuanVideo", subfolder='vae', torch_dtype=torch.float16).cpu()
|
|
|
|
|
|
feature_extractor = SiglipImageProcessor.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='feature_extractor')
|
|
|
image_encoder = SiglipVisionModel.from_pretrained("lllyasviel/flux_redux_bfl", subfolder='image_encoder', torch_dtype=torch.float16).cpu()
|
|
|
|
|
|
transformer = HunyuanVideoTransformer3DModelPacked.from_pretrained('lllyasviel/FramePackI2V_HY', torch_dtype=torch.bfloat16).cpu()
|
|
|
|
|
|
vae.eval()
|
|
|
text_encoder.eval()
|
|
|
text_encoder_2.eval()
|
|
|
image_encoder.eval()
|
|
|
transformer.eval()
|
|
|
|
|
|
if not high_vram:
|
|
|
vae.enable_slicing()
|
|
|
vae.enable_tiling()
|
|
|
|
|
|
transformer.high_quality_fp32_output_for_inference = True
|
|
|
print('transformer.high_quality_fp32_output_for_inference = True')
|
|
|
|
|
|
transformer.to(dtype=torch.bfloat16)
|
|
|
vae.to(dtype=torch.float16)
|
|
|
image_encoder.to(dtype=torch.float16)
|
|
|
text_encoder.to(dtype=torch.float16)
|
|
|
text_encoder_2.to(dtype=torch.float16)
|
|
|
|
|
|
vae.requires_grad_(False)
|
|
|
text_encoder.requires_grad_(False)
|
|
|
text_encoder_2.requires_grad_(False)
|
|
|
image_encoder.requires_grad_(False)
|
|
|
transformer.requires_grad_(False)
|
|
|
|
|
|
if not high_vram:
|
|
|
|
|
|
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
|
|
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
|
|
else:
|
|
|
text_encoder.to(gpu)
|
|
|
text_encoder_2.to(gpu)
|
|
|
image_encoder.to(gpu)
|
|
|
vae.to(gpu)
|
|
|
transformer.to(gpu)
|
|
|
|
|
|
stream = AsyncStream()
|
|
|
|
|
|
outputs_folder = './outputs/'
|
|
|
os.makedirs(outputs_folder, exist_ok=True)
|
|
|
|
|
|
input_video_debug_value = prompt_debug_value = total_second_length_debug_value = None
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
def video_encode(video_path, resolution, no_resize, vae, vae_batch_size=16, device="cuda", width=None, height=None):
|
|
|
"""
|
|
|
Encode a video into latent representations using the VAE.
|
|
|
|
|
|
Args:
|
|
|
video_path: Path to the input video file.
|
|
|
vae: AutoencoderKLHunyuanVideo model.
|
|
|
height, width: Target resolution for resizing frames.
|
|
|
vae_batch_size: Number of frames to process per batch.
|
|
|
device: Device for computation (e.g., "cuda").
|
|
|
|
|
|
Returns:
|
|
|
start_latent: Latent of the first frame (for compatibility with original code).
|
|
|
input_image_np: First frame as numpy array (for CLIP vision encoding).
|
|
|
history_latents: Latents of all frames (shape: [1, channels, frames, height//8, width//8]).
|
|
|
fps: Frames per second of the input video.
|
|
|
"""
|
|
|
|
|
|
video_path = str(pathlib.Path(video_path).resolve())
|
|
|
print(f"Processing video: {video_path}")
|
|
|
|
|
|
|
|
|
if device == "cuda" and not torch.cuda.is_available():
|
|
|
print("CUDA is not available, falling back to CPU")
|
|
|
device = "cpu"
|
|
|
|
|
|
try:
|
|
|
|
|
|
print("Initializing VideoReader...")
|
|
|
vr = decord.VideoReader(video_path)
|
|
|
fps = vr.get_avg_fps()
|
|
|
num_real_frames = len(vr)
|
|
|
print(f"Video loaded: {num_real_frames} frames, FPS: {fps}")
|
|
|
|
|
|
|
|
|
latent_size_factor = 4
|
|
|
num_frames = (num_real_frames // latent_size_factor) * latent_size_factor
|
|
|
if num_frames != num_real_frames:
|
|
|
print(f"Truncating video from {num_real_frames} to {num_frames} frames for latent size compatibility")
|
|
|
num_real_frames = num_frames
|
|
|
|
|
|
|
|
|
print("Reading video frames...")
|
|
|
frames = vr.get_batch(range(num_real_frames)).asnumpy()
|
|
|
print(f"Frames read: {frames.shape}")
|
|
|
|
|
|
|
|
|
native_height, native_width = frames.shape[1], frames.shape[2]
|
|
|
print(f"Native video resolution: {native_width}x{native_height}")
|
|
|
|
|
|
|
|
|
target_height = native_height if height is None else height
|
|
|
target_width = native_width if width is None else width
|
|
|
|
|
|
|
|
|
if not no_resize:
|
|
|
target_height, target_width = find_nearest_bucket(target_height, target_width, resolution=resolution)
|
|
|
print(f"Adjusted resolution: {target_width}x{target_height}")
|
|
|
else:
|
|
|
print(f"Using native resolution without resizing: {target_width}x{target_height}")
|
|
|
|
|
|
|
|
|
processed_frames = []
|
|
|
for i, frame in enumerate(frames):
|
|
|
|
|
|
frame_np = resize_and_center_crop(frame, target_width=target_width, target_height=target_height)
|
|
|
processed_frames.append(frame_np)
|
|
|
processed_frames = np.stack(processed_frames)
|
|
|
print(f"Frames preprocessed: {processed_frames.shape}")
|
|
|
|
|
|
|
|
|
input_image_np = processed_frames[0]
|
|
|
end_of_input_video_image_np = processed_frames[-1]
|
|
|
|
|
|
|
|
|
print("Converting frames to tensor...")
|
|
|
frames_pt = torch.from_numpy(processed_frames).float() / 127.5 - 1
|
|
|
frames_pt = frames_pt.permute(0, 3, 1, 2)
|
|
|
frames_pt = frames_pt.unsqueeze(0)
|
|
|
frames_pt = frames_pt.permute(0, 2, 1, 3, 4)
|
|
|
print(f"Tensor shape: {frames_pt.shape}")
|
|
|
|
|
|
|
|
|
input_video_pixels = frames_pt.cpu()
|
|
|
|
|
|
|
|
|
print(f"Moving tensor to device: {device}")
|
|
|
frames_pt = frames_pt.to(device)
|
|
|
print("Tensor moved to device")
|
|
|
|
|
|
|
|
|
print(f"Moving VAE to device: {device}")
|
|
|
vae.to(device)
|
|
|
print("VAE moved to device")
|
|
|
|
|
|
|
|
|
print(f"Encoding input video frames in VAE batch size {vae_batch_size} (reduce if memory issues here or if forcing video resolution)")
|
|
|
latents = []
|
|
|
vae.eval()
|
|
|
with torch.no_grad():
|
|
|
for i in tqdm(range(0, frames_pt.shape[2], vae_batch_size), desc="Encoding video frames", mininterval=0.1):
|
|
|
|
|
|
batch = frames_pt[:, :, i:i + vae_batch_size]
|
|
|
try:
|
|
|
|
|
|
if device == "cuda":
|
|
|
free_mem = torch.cuda.memory_allocated() / 1024**3
|
|
|
|
|
|
batch_latent = vae_encode(batch, vae)
|
|
|
|
|
|
if device == "cuda":
|
|
|
torch.cuda.synchronize()
|
|
|
|
|
|
latents.append(batch_latent)
|
|
|
|
|
|
except RuntimeError as e:
|
|
|
print(f"Error during VAE encoding: {str(e)}")
|
|
|
if device == "cuda" and "out of memory" in str(e).lower():
|
|
|
print("CUDA out of memory, try reducing vae_batch_size or using CPU")
|
|
|
raise
|
|
|
|
|
|
|
|
|
print("Concatenating latents...")
|
|
|
history_latents = torch.cat(latents, dim=2)
|
|
|
print(f"History latents shape: {history_latents.shape}")
|
|
|
|
|
|
|
|
|
start_latent = history_latents[:, :, :1]
|
|
|
end_of_input_video_latent = history_latents[:, :, -1:]
|
|
|
print(f"Start latent shape: {start_latent.shape}")
|
|
|
|
|
|
|
|
|
if device == "cuda":
|
|
|
vae.to(cpu)
|
|
|
torch.cuda.empty_cache()
|
|
|
print("VAE moved back to CPU, CUDA cache cleared")
|
|
|
|
|
|
return start_latent, input_image_np, history_latents, fps, target_height, target_width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np
|
|
|
|
|
|
except Exception as e:
|
|
|
print(f"Error in video_encode: {str(e)}")
|
|
|
raise
|
|
|
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
def image_encode(image_np, target_width, target_height, vae, image_encoder, feature_extractor, device="cuda"):
|
|
|
"""
|
|
|
Encode a single image into a latent and compute its CLIP vision embedding.
|
|
|
|
|
|
Args:
|
|
|
image_np: Input image as numpy array.
|
|
|
target_width, target_height: Exact resolution to resize the image to (matches start frame).
|
|
|
vae: AutoencoderKLHunyuanVideo model.
|
|
|
image_encoder: SiglipVisionModel for CLIP vision encoding.
|
|
|
feature_extractor: SiglipImageProcessor for preprocessing.
|
|
|
device: Device for computation (e.g., "cuda").
|
|
|
|
|
|
Returns:
|
|
|
latent: Latent representation of the image (shape: [1, channels, 1, height//8, width//8]).
|
|
|
clip_embedding: CLIP vision embedding of the image.
|
|
|
processed_image_np: Processed image as numpy array (after resizing).
|
|
|
"""
|
|
|
|
|
|
print("Processing end frame...")
|
|
|
try:
|
|
|
print(f"Using exact start frame resolution for end frame: {target_width}x{target_height}")
|
|
|
|
|
|
|
|
|
processed_image_np = resize_and_center_crop(image_np, target_width=target_width, target_height=target_height)
|
|
|
|
|
|
|
|
|
image_pt = torch.from_numpy(processed_image_np).float() / 127.5 - 1
|
|
|
image_pt = image_pt.permute(2, 0, 1).unsqueeze(0).unsqueeze(2)
|
|
|
image_pt = image_pt.to(device)
|
|
|
|
|
|
|
|
|
vae.to(device)
|
|
|
|
|
|
|
|
|
latent = vae_encode(image_pt, vae)
|
|
|
print(f"image_encode vae output shape: {latent.shape}")
|
|
|
|
|
|
|
|
|
image_encoder.to(device)
|
|
|
|
|
|
|
|
|
clip_embedding = hf_clip_vision_encode(processed_image_np, feature_extractor, image_encoder).last_hidden_state
|
|
|
|
|
|
|
|
|
if device == "cuda":
|
|
|
vae.to(cpu)
|
|
|
image_encoder.to(cpu)
|
|
|
torch.cuda.empty_cache()
|
|
|
print("VAE and image encoder moved back to CPU, CUDA cache cleared")
|
|
|
|
|
|
print(f"End latent shape: {latent.shape}")
|
|
|
return latent, clip_embedding, processed_image_np
|
|
|
|
|
|
except Exception as e:
|
|
|
print(f"Error in image_encode: {str(e)}")
|
|
|
raise
|
|
|
|
|
|
|
|
|
def set_mp4_comments_imageio_ffmpeg(input_file, comments):
|
|
|
try:
|
|
|
|
|
|
ffmpeg_path = imageio_ffmpeg.get_ffmpeg_exe()
|
|
|
|
|
|
|
|
|
if not os.path.exists(input_file):
|
|
|
print(f"Error: Input file {input_file} does not exist")
|
|
|
return False
|
|
|
|
|
|
|
|
|
temp_file = tempfile.NamedTemporaryFile(suffix='.mp4', delete=False).name
|
|
|
|
|
|
|
|
|
command = [
|
|
|
ffmpeg_path,
|
|
|
'-i', input_file,
|
|
|
'-metadata', f'comment={comments}',
|
|
|
'-c:v', 'copy',
|
|
|
'-c:a', 'copy',
|
|
|
'-y',
|
|
|
temp_file
|
|
|
]
|
|
|
|
|
|
|
|
|
result = subprocess.run(command, stdout=subprocess.PIPE, stderr=subprocess.PIPE, text=True)
|
|
|
|
|
|
if result.returncode == 0:
|
|
|
|
|
|
shutil.move(temp_file, input_file)
|
|
|
print(f"Successfully added comments to {input_file}")
|
|
|
return True
|
|
|
else:
|
|
|
|
|
|
if os.path.exists(temp_file):
|
|
|
os.remove(temp_file)
|
|
|
print(f"Error: FFmpeg failed with message:\n{result.stderr}")
|
|
|
return False
|
|
|
|
|
|
except Exception as e:
|
|
|
|
|
|
if 'temp_file' in locals() and os.path.exists(temp_file):
|
|
|
os.remove(temp_file)
|
|
|
print(f"Error saving prompt to video metadata, ffmpeg may be required: "+str(e))
|
|
|
return False
|
|
|
|
|
|
|
|
|
@torch.no_grad()
|
|
|
def worker(input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch):
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Starting ...'))))
|
|
|
|
|
|
try:
|
|
|
|
|
|
if not high_vram:
|
|
|
unload_complete_models(
|
|
|
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
|
|
)
|
|
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Text encoding ...'))))
|
|
|
|
|
|
if not high_vram:
|
|
|
fake_diffusers_current_device(text_encoder, gpu)
|
|
|
load_model_as_complete(text_encoder_2, target_device=gpu)
|
|
|
|
|
|
llama_vec, clip_l_pooler = encode_prompt_conds(prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
|
|
|
|
|
if cfg == 1:
|
|
|
llama_vec_n, clip_l_pooler_n = torch.zeros_like(llama_vec), torch.zeros_like(clip_l_pooler)
|
|
|
else:
|
|
|
llama_vec_n, clip_l_pooler_n = encode_prompt_conds(n_prompt, text_encoder, text_encoder_2, tokenizer, tokenizer_2)
|
|
|
|
|
|
llama_vec, llama_attention_mask = crop_or_pad_yield_mask(llama_vec, length=512)
|
|
|
llama_vec_n, llama_attention_mask_n = crop_or_pad_yield_mask(llama_vec_n, length=512)
|
|
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Video processing ...'))))
|
|
|
|
|
|
|
|
|
start_latent, input_image_np, video_latents, fps, height, width, input_video_pixels, end_of_input_video_latent, end_of_input_video_image_np = video_encode(input_video, resolution, no_resize, vae, vae_batch_size=vae_batch, device=gpu)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'CLIP Vision encoding ...'))))
|
|
|
|
|
|
if not high_vram:
|
|
|
load_model_as_complete(image_encoder, target_device=gpu)
|
|
|
|
|
|
image_encoder_output = hf_clip_vision_encode(input_image_np, feature_extractor, image_encoder)
|
|
|
image_encoder_last_hidden_state = image_encoder_output.last_hidden_state
|
|
|
start_embedding = image_encoder_last_hidden_state
|
|
|
|
|
|
end_of_input_video_output = hf_clip_vision_encode(end_of_input_video_image_np, feature_extractor, image_encoder)
|
|
|
end_of_input_video_last_hidden_state = end_of_input_video_output.last_hidden_state
|
|
|
end_of_input_video_embedding = end_of_input_video_last_hidden_state
|
|
|
|
|
|
|
|
|
end_latent = None
|
|
|
end_clip_embedding = None
|
|
|
if end_frame is not None:
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'End frame encoding ...'))))
|
|
|
end_latent, end_clip_embedding, _ = image_encode(
|
|
|
end_frame, target_width=width, target_height=height, vae=vae,
|
|
|
image_encoder=image_encoder, feature_extractor=feature_extractor, device=gpu
|
|
|
)
|
|
|
|
|
|
|
|
|
llama_vec = llama_vec.to(transformer.dtype)
|
|
|
llama_vec_n = llama_vec_n.to(transformer.dtype)
|
|
|
clip_l_pooler = clip_l_pooler.to(transformer.dtype)
|
|
|
clip_l_pooler_n = clip_l_pooler_n.to(transformer.dtype)
|
|
|
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
|
|
end_of_input_video_embedding = end_of_input_video_embedding.to(transformer.dtype)
|
|
|
|
|
|
|
|
|
total_latent_sections = (total_second_length * fps) / (latent_window_size * 4)
|
|
|
total_latent_sections = int(max(round(total_latent_sections), 1))
|
|
|
|
|
|
for idx in range(batch):
|
|
|
if batch > 1:
|
|
|
print(f"Beginning video {idx+1} of {batch} with seed {seed} ")
|
|
|
|
|
|
job_id = datetime.now().strftime("%Y-%m-%d_%H-%M-%S")+f"_framepack-videoinput-endframe_{width}-{total_second_length}sec_seed-{seed}_steps-{steps}_distilled-{gs}_cfg-{cfg}"
|
|
|
|
|
|
stream.output_queue.push(('progress', (None, '', make_progress_bar_html(0, 'Start sampling ...'))))
|
|
|
|
|
|
rnd = torch.Generator("cpu").manual_seed(seed)
|
|
|
|
|
|
history_latents = video_latents.cpu()
|
|
|
history_pixels = None
|
|
|
total_generated_latent_frames = 0
|
|
|
previous_video = None
|
|
|
|
|
|
|
|
|
|
|
|
if total_latent_sections > 4:
|
|
|
latent_paddings = [3] + [2] * (total_latent_sections - 3) + [1, 0]
|
|
|
else:
|
|
|
latent_paddings = list(reversed(range(total_latent_sections)))
|
|
|
|
|
|
for section_index, latent_padding in enumerate(latent_paddings):
|
|
|
is_start_of_video = latent_padding == 0
|
|
|
is_end_of_video = latent_padding == latent_paddings[0]
|
|
|
latent_padding_size = latent_padding * latent_window_size
|
|
|
|
|
|
if stream.input_queue.top() == 'end':
|
|
|
stream.output_queue.push(('end', None))
|
|
|
return
|
|
|
|
|
|
if not high_vram:
|
|
|
unload_complete_models()
|
|
|
move_model_to_device_with_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=gpu_memory_preservation)
|
|
|
|
|
|
if use_teacache:
|
|
|
transformer.initialize_teacache(enable_teacache=True, num_steps=steps)
|
|
|
else:
|
|
|
transformer.initialize_teacache(enable_teacache=False)
|
|
|
|
|
|
def callback(d):
|
|
|
try:
|
|
|
preview = d['denoised']
|
|
|
preview = vae_decode_fake(preview)
|
|
|
preview = (preview * 255.0).detach().cpu().numpy().clip(0, 255).astype(np.uint8)
|
|
|
preview = einops.rearrange(preview, 'b c t h w -> (b h) (t w) c')
|
|
|
if stream.input_queue.top() == 'end':
|
|
|
stream.output_queue.push(('end', None))
|
|
|
raise KeyboardInterrupt('User ends the task.')
|
|
|
current_step = d['i'] + 1
|
|
|
percentage = int(100.0 * current_step / steps)
|
|
|
hint = f'Sampling {current_step}/{steps}'
|
|
|
desc = f'Total frames: {int(max(0, total_generated_latent_frames * 4 - 3))}, Video length: {max(0, (total_generated_latent_frames * 4 - 3) / fps) :.2f} seconds (FPS-{fps}), Seed: {seed}, Video {idx+1} of {batch}. Generating part {total_latent_sections - section_index} of {total_latent_sections} backward...'
|
|
|
stream.output_queue.push(('progress', (preview, desc, make_progress_bar_html(percentage, hint))))
|
|
|
except ConnectionResetError as e:
|
|
|
print(f"Suppressed ConnectionResetError in callback: {e}")
|
|
|
return
|
|
|
|
|
|
|
|
|
available_frames = video_latents.shape[2] if is_start_of_video else history_latents.shape[2]
|
|
|
if is_start_of_video:
|
|
|
effective_clean_frames = 1
|
|
|
else:
|
|
|
effective_clean_frames = max(0, num_clean_frames - 1) if num_clean_frames > 1 else 1
|
|
|
clean_latent_pre_frames = effective_clean_frames
|
|
|
num_2x_frames = min(2, max(1, available_frames - clean_latent_pre_frames - 1)) if available_frames > clean_latent_pre_frames + 1 else 1
|
|
|
num_4x_frames = min(16, max(1, available_frames - clean_latent_pre_frames - num_2x_frames)) if available_frames > clean_latent_pre_frames + num_2x_frames else 1
|
|
|
total_context_frames = num_2x_frames + num_4x_frames
|
|
|
total_context_frames = min(total_context_frames, available_frames - clean_latent_pre_frames)
|
|
|
|
|
|
|
|
|
post_frames = 1 if is_end_of_video and end_latent is not None else effective_clean_frames
|
|
|
indices = torch.arange(0, clean_latent_pre_frames + latent_padding_size + latent_window_size + post_frames + num_2x_frames + num_4x_frames).unsqueeze(0)
|
|
|
clean_latent_indices_pre, blank_indices, latent_indices, clean_latent_indices_post, clean_latent_2x_indices, clean_latent_4x_indices = indices.split(
|
|
|
[clean_latent_pre_frames, latent_padding_size, latent_window_size, post_frames, num_2x_frames, num_4x_frames], dim=1
|
|
|
)
|
|
|
clean_latent_indices = torch.cat([clean_latent_indices_pre, clean_latent_indices_post], dim=1)
|
|
|
|
|
|
|
|
|
context_frames = history_latents[:, :, -(total_context_frames + clean_latent_pre_frames):-clean_latent_pre_frames, :, :] if total_context_frames > 0 else history_latents[:, :, :1, :, :]
|
|
|
split_sizes = [num_4x_frames, num_2x_frames]
|
|
|
split_sizes = [s for s in split_sizes if s > 0]
|
|
|
if split_sizes and context_frames.shape[2] >= sum(split_sizes):
|
|
|
splits = context_frames.split(split_sizes, dim=2)
|
|
|
split_idx = 0
|
|
|
clean_latents_4x = splits[split_idx] if num_4x_frames > 0 else history_latents[:, :, :1, :, :]
|
|
|
split_idx += 1 if num_4x_frames > 0 else 0
|
|
|
clean_latents_2x = splits[split_idx] if num_2x_frames > 0 and split_idx < len(splits) else history_latents[:, :, :1, :, :]
|
|
|
else:
|
|
|
clean_latents_4x = clean_latents_2x = history_latents[:, :, :1, :, :]
|
|
|
|
|
|
clean_latents_pre = video_latents[:, :, -min(effective_clean_frames, video_latents.shape[2]):].to(history_latents)
|
|
|
clean_latents_post = history_latents[:, :, :min(effective_clean_frames, history_latents.shape[2]), :, :]
|
|
|
|
|
|
if is_end_of_video:
|
|
|
clean_latents_post = torch.zeros_like(end_of_input_video_latent).to(history_latents)
|
|
|
|
|
|
|
|
|
if end_latent is not None:
|
|
|
|
|
|
|
|
|
current_end_frame_weight = end_frame_weight
|
|
|
|
|
|
image_encoder_last_hidden_state = (1 - current_end_frame_weight) * end_of_input_video_embedding + end_clip_embedding * current_end_frame_weight
|
|
|
image_encoder_last_hidden_state = image_encoder_last_hidden_state.to(transformer.dtype)
|
|
|
|
|
|
|
|
|
if is_end_of_video:
|
|
|
clean_latents_post = end_latent.to(history_latents)[:, :, :1, :, :]
|
|
|
|
|
|
|
|
|
if clean_latents_pre.shape[2] < clean_latent_pre_frames:
|
|
|
clean_latents_pre = clean_latents_pre.repeat(1, 1, clean_latent_pre_frames // clean_latents_pre.shape[2], 1, 1)
|
|
|
|
|
|
if clean_latents_post.shape[2] < post_frames:
|
|
|
clean_latents_post = clean_latents_post.repeat(1, 1, post_frames // clean_latents_post.shape[2], 1, 1)
|
|
|
|
|
|
clean_latents = torch.cat([clean_latents_pre, clean_latents_post], dim=2)
|
|
|
|
|
|
max_frames = min(latent_window_size * 4 - 3, history_latents.shape[2] * 4)
|
|
|
print(f"Generating video {idx+1} of {batch} with seed {seed}, part {total_latent_sections - section_index} of {total_latent_sections} backward")
|
|
|
generated_latents = sample_hunyuan(
|
|
|
transformer=transformer,
|
|
|
sampler='unipc',
|
|
|
width=width,
|
|
|
height=height,
|
|
|
frames=max_frames,
|
|
|
real_guidance_scale=cfg,
|
|
|
distilled_guidance_scale=gs,
|
|
|
guidance_rescale=rs,
|
|
|
num_inference_steps=steps,
|
|
|
generator=rnd,
|
|
|
prompt_embeds=llama_vec,
|
|
|
prompt_embeds_mask=llama_attention_mask,
|
|
|
prompt_poolers=clip_l_pooler,
|
|
|
negative_prompt_embeds=llama_vec_n,
|
|
|
negative_prompt_embeds_mask=llama_attention_mask_n,
|
|
|
negative_prompt_poolers=clip_l_pooler_n,
|
|
|
device=gpu,
|
|
|
dtype=torch.bfloat16,
|
|
|
image_embeddings=image_encoder_last_hidden_state,
|
|
|
latent_indices=latent_indices,
|
|
|
clean_latents=clean_latents,
|
|
|
clean_latent_indices=clean_latent_indices,
|
|
|
clean_latents_2x=clean_latents_2x,
|
|
|
clean_latent_2x_indices=clean_latent_2x_indices,
|
|
|
clean_latents_4x=clean_latents_4x,
|
|
|
clean_latent_4x_indices=clean_latent_4x_indices,
|
|
|
callback=callback,
|
|
|
)
|
|
|
|
|
|
if is_start_of_video:
|
|
|
generated_latents = torch.cat([video_latents[:, :, -1:].to(generated_latents), generated_latents], dim=2)
|
|
|
|
|
|
total_generated_latent_frames += int(generated_latents.shape[2])
|
|
|
history_latents = torch.cat([generated_latents.to(history_latents), history_latents], dim=2)
|
|
|
|
|
|
if not high_vram:
|
|
|
offload_model_from_device_for_memory_preservation(transformer, target_device=gpu, preserved_memory_gb=8)
|
|
|
load_model_as_complete(vae, target_device=gpu)
|
|
|
|
|
|
real_history_latents = history_latents[:, :, :total_generated_latent_frames, :, :]
|
|
|
if history_pixels is None:
|
|
|
history_pixels = vae_decode(real_history_latents, vae).cpu()
|
|
|
else:
|
|
|
section_latent_frames = (latent_window_size * 2 + 1) if is_start_of_video else (latent_window_size * 2)
|
|
|
overlapped_frames = latent_window_size * 4 - 3
|
|
|
current_pixels = vae_decode(real_history_latents[:, :, :section_latent_frames], vae).cpu()
|
|
|
history_pixels = soft_append_bcthw(current_pixels, history_pixels, overlapped_frames)
|
|
|
|
|
|
if not high_vram:
|
|
|
unload_complete_models()
|
|
|
|
|
|
output_filename = os.path.join(outputs_folder, f'{job_id}_{total_generated_latent_frames}.mp4')
|
|
|
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
|
|
|
print(f"Latest video saved: {output_filename}")
|
|
|
set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
|
|
|
print(f"Prompt saved to mp4 metadata comments: {output_filename}")
|
|
|
|
|
|
if previous_video is not None and os.path.exists(previous_video):
|
|
|
try:
|
|
|
os.remove(previous_video)
|
|
|
print(f"Previous partial video deleted: {previous_video}")
|
|
|
except Exception as e:
|
|
|
print(f"Error deleting previous partial video {previous_video}: {e}")
|
|
|
previous_video = output_filename
|
|
|
|
|
|
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
|
|
stream.output_queue.push(('file', output_filename))
|
|
|
|
|
|
if is_start_of_video:
|
|
|
break
|
|
|
|
|
|
history_pixels = torch.cat([input_video_pixels, history_pixels], dim=2)
|
|
|
|
|
|
output_filename = os.path.join(outputs_folder, f'{job_id}_final.mp4')
|
|
|
save_bcthw_as_mp4(history_pixels, output_filename, fps=fps, crf=mp4_crf)
|
|
|
print(f"Final video with input blend saved: {output_filename}")
|
|
|
set_mp4_comments_imageio_ffmpeg(output_filename, f"Prompt: {prompt} | Negative Prompt: {n_prompt}")
|
|
|
print(f"Prompt saved to mp4 metadata comments: {output_filename}")
|
|
|
stream.output_queue.push(('file', output_filename))
|
|
|
|
|
|
if previous_video is not None and os.path.exists(previous_video):
|
|
|
try:
|
|
|
os.remove(previous_video)
|
|
|
print(f"Previous partial video deleted: {previous_video}")
|
|
|
except Exception as e:
|
|
|
print(f"Error deleting previous partial video {previous_video}: {e}")
|
|
|
previous_video = output_filename
|
|
|
|
|
|
print(f'Decoded. Current latent shape {real_history_latents.shape}; pixel shape {history_pixels.shape}')
|
|
|
|
|
|
stream.output_queue.push(('file', output_filename))
|
|
|
|
|
|
seed = (seed + 1) % np.iinfo(np.int32).max
|
|
|
|
|
|
except:
|
|
|
traceback.print_exc()
|
|
|
|
|
|
if not high_vram:
|
|
|
unload_complete_models(
|
|
|
text_encoder, text_encoder_2, image_encoder, vae, transformer
|
|
|
)
|
|
|
|
|
|
stream.output_queue.push(('end', None))
|
|
|
return
|
|
|
|
|
|
|
|
|
def get_duration(
|
|
|
input_video, end_frame, end_frame_weight, prompt, n_prompt,
|
|
|
randomize_seed,
|
|
|
seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache,
|
|
|
no_resize, mp4_crf, num_clean_frames, vae_batch):
|
|
|
global total_second_length_debug_value
|
|
|
if total_second_length_debug_value is not None:
|
|
|
return min(total_second_length_debug_value * 60 * 2, 600)
|
|
|
return total_second_length * 60 * 2
|
|
|
|
|
|
@spaces.GPU(duration=get_duration)
|
|
|
def process(
|
|
|
input_video, end_frame, end_frame_weight, prompt, n_prompt,
|
|
|
randomize_seed,
|
|
|
seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache,
|
|
|
no_resize, mp4_crf, num_clean_frames, vae_batch):
|
|
|
global stream, high_vram, input_video_debug_value, prompt_debug_value, total_second_length_debug_value
|
|
|
|
|
|
if torch.cuda.device_count() == 0:
|
|
|
gr.Warning('Set this space to GPU config to make it work.')
|
|
|
return None, None, None, None, None, None
|
|
|
|
|
|
if input_video_debug_value is not None or prompt_debug_value is not None or total_second_length_debug_value is not None:
|
|
|
input_video = input_video_debug_value
|
|
|
prompt = prompt_debug_value
|
|
|
total_second_length = total_second_length_debug_value
|
|
|
input_video_debug_value = prompt_debug_value = total_second_length_debug_value = None
|
|
|
|
|
|
if randomize_seed:
|
|
|
seed = random.randint(0, np.iinfo(np.int32).max)
|
|
|
|
|
|
|
|
|
assert input_video is not None, 'No input video!'
|
|
|
|
|
|
yield None, None, '', '', gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
|
|
|
|
|
if high_vram and (no_resize or resolution>640):
|
|
|
print("Disabling high vram mode due to no resize and/or potentially higher resolution...")
|
|
|
high_vram = False
|
|
|
vae.enable_slicing()
|
|
|
vae.enable_tiling()
|
|
|
DynamicSwapInstaller.install_model(transformer, device=gpu)
|
|
|
DynamicSwapInstaller.install_model(text_encoder, device=gpu)
|
|
|
|
|
|
|
|
|
if cfg > 1:
|
|
|
gs = 1
|
|
|
|
|
|
stream = AsyncStream()
|
|
|
|
|
|
|
|
|
async_run(worker, input_video, end_frame, end_frame_weight, prompt, n_prompt, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch)
|
|
|
|
|
|
output_filename = None
|
|
|
|
|
|
while True:
|
|
|
flag, data = stream.output_queue.next()
|
|
|
|
|
|
if flag == 'file':
|
|
|
output_filename = data
|
|
|
yield output_filename, gr.update(), gr.update(), gr.update(), gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
|
|
if flag == 'progress':
|
|
|
preview, desc, html = data
|
|
|
|
|
|
yield output_filename, gr.update(visible=True, value=preview), desc, html, gr.update(interactive=False), gr.update(interactive=True)
|
|
|
|
|
|
if flag == 'end':
|
|
|
yield output_filename, gr.update(visible=False), desc+' Video complete.', '', gr.update(interactive=True), gr.update(interactive=False)
|
|
|
break
|
|
|
|
|
|
def end_process():
|
|
|
stream.input_queue.push('end')
|
|
|
|
|
|
css = make_progress_bar_css()
|
|
|
block = gr.Blocks(css=css).queue(
|
|
|
max_size=10
|
|
|
)
|
|
|
with block:
|
|
|
if torch.cuda.device_count() == 0:
|
|
|
with gr.Row():
|
|
|
gr.HTML("""
|
|
|
<p style="background-color: red;"><big><big><big><b>⚠️To use FramePack, <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR?duplicate=true">duplicate this space</a> and set a GPU with 30 GB VRAM.</b>
|
|
|
|
|
|
You can't use FramePack directly here because this space runs on a CPU, which is not enough for FramePack. Please provide <a href="https://huggingface.co/spaces/Fabrice-TIERCELIN/SUPIR/discussions/new">feedback</a> if you have issues.
|
|
|
</big></big></big></p>
|
|
|
""")
|
|
|
|
|
|
gr.Markdown('# Framepack with Video Input (Video Extension) + End Frame')
|
|
|
with gr.Row():
|
|
|
with gr.Column():
|
|
|
|
|
|
|
|
|
with gr.Row():
|
|
|
input_video = gr.Video(sources='upload', label="Input Video", height=320)
|
|
|
with gr.Column():
|
|
|
|
|
|
end_frame = gr.Image(sources='upload', type="numpy", label="End Frame (Optional) - Reduce context frames if very different from input video or if it is jumpcutting/slowing to still image.", height=320)
|
|
|
end_frame_weight = gr.Slider(label="End Frame Weight", minimum=0.0, maximum=1.0, value=1.0, step=0.01, info='Reduce to treat more as a reference image; no effect')
|
|
|
|
|
|
prompt = gr.Textbox(label="Prompt", value='')
|
|
|
|
|
|
with gr.Row():
|
|
|
start_button = gr.Button(value="Start Generation", variant="primary")
|
|
|
end_button = gr.Button(value="End Generation", variant="stop", interactive=False)
|
|
|
|
|
|
with gr.Accordion("Advanced settings", open=False):
|
|
|
with gr.Row():
|
|
|
use_teacache = gr.Checkbox(label='Use TeaCache', value=True, info='Faster speed, but often makes hands and fingers slightly worse.')
|
|
|
no_resize = gr.Checkbox(label='Force Original Video Resolution (No Resizing)', value=False, info='Might run out of VRAM (720p requires > 24GB VRAM).')
|
|
|
|
|
|
randomize_seed = gr.Checkbox(label='Randomize seed', value=True, info='If checked, the seed is always different')
|
|
|
seed = gr.Slider(label="Seed", minimum=0, maximum=np.iinfo(np.int32).max, step=1, randomize=True)
|
|
|
|
|
|
batch = gr.Slider(label="Batch Size (Number of Videos)", minimum=1, maximum=1000, value=1, step=1, info='Generate multiple videos each with a different seed.')
|
|
|
|
|
|
resolution = gr.Number(label="Resolution (max width or height)", value=640, precision=0)
|
|
|
|
|
|
total_second_length = gr.Slider(label="Additional Video Length to Generate (Seconds)", minimum=1, maximum=120, value=5, step=0.1)
|
|
|
|
|
|
|
|
|
gs = gr.Slider(label="Distilled CFG Scale", minimum=1.0, maximum=32.0, value=10.0, step=0.01, info='Prompt adherence at the cost of less details from the input video, but to a lesser extent than Context Frames.')
|
|
|
cfg = gr.Slider(label="CFG Scale", minimum=1.0, maximum=32.0, value=1.0, step=0.01, info='Use instead of Distilled for more detail/control + Negative Prompt (make sure Distilled=1). Doubles render time.')
|
|
|
rs = gr.Slider(label="CFG Re-Scale", minimum=0.0, maximum=1.0, value=0.0, step=0.01)
|
|
|
|
|
|
n_prompt = gr.Textbox(label="Negative Prompt", value="Missing arm, unrealistic position, blurred, blurry", info='Requires using normal CFG (undistilled) instead of Distilled (set Distilled=1 and CFG > 1).')
|
|
|
|
|
|
steps = gr.Slider(label="Steps", minimum=1, maximum=100, value=25, step=1, info='Expensive. Increase for more quality, especially if using high non-distilled CFG.')
|
|
|
|
|
|
|
|
|
num_clean_frames = gr.Slider(label="Number of Context Frames (Adherence to Video)", minimum=2, maximum=10, value=5, step=1, info="Expensive. Retain more video details. Reduce if memory issues or motion too restricted (jumpcut, ignoring prompt, still).")
|
|
|
|
|
|
default_vae = 32
|
|
|
if high_vram:
|
|
|
default_vae = 128
|
|
|
elif free_mem_gb>=20:
|
|
|
default_vae = 64
|
|
|
|
|
|
vae_batch = gr.Slider(label="VAE Batch Size for Input Video", minimum=4, maximum=256, value=default_vae, step=4, info="Expensive. Increase for better quality frames during fast motion. Reduce if running out of memory")
|
|
|
|
|
|
latent_window_size = gr.Slider(label="Latent Window Size", minimum=9, maximum=49, value=9, step=1, info='Expensive. Generate more frames at a time (larger chunks). Less degradation but higher VRAM cost.')
|
|
|
|
|
|
gpu_memory_preservation = gr.Slider(label="GPU Inference Preserved Memory (GB) (larger means slower)", minimum=6, maximum=128, value=6, step=0.1, info="Set this number to a larger value if you encounter OOM. Larger value causes slower speed.")
|
|
|
|
|
|
mp4_crf = gr.Slider(label="MP4 Compression", minimum=0, maximum=100, value=16, step=1, info="Lower means better quality. 0 is uncompressed. Change to 16 if you get black outputs. ")
|
|
|
|
|
|
with gr.Accordion("Debug", open=False):
|
|
|
input_video_debug = gr.Video(sources='upload', label="Input Video Debug", height=320)
|
|
|
prompt_debug = gr.Textbox(label="Prompt Debug", value='')
|
|
|
total_second_length_debug = gr.Slider(label="Additional Video Length to Generate (Seconds) Debug", minimum=1, maximum=120, value=5, step=0.1)
|
|
|
|
|
|
with gr.Column():
|
|
|
preview_image = gr.Image(label="Next Latents", height=200, visible=False)
|
|
|
result_video = gr.Video(label="Finished Frames", autoplay=True, show_share_button=False, height=512, loop=True)
|
|
|
progress_desc = gr.Markdown('', elem_classes='no-generating-animation')
|
|
|
progress_bar = gr.HTML('', elem_classes='no-generating-animation')
|
|
|
|
|
|
with gr.Row(visible=False):
|
|
|
gr.Examples(
|
|
|
examples = [
|
|
|
[
|
|
|
"./img_examples/Example1.mp4",
|
|
|
"./img_examples/Example1.png",
|
|
|
0.0,
|
|
|
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
|
|
"Missing arm, unrealistic position, blurred, blurry",
|
|
|
True,
|
|
|
42,
|
|
|
1,
|
|
|
640,
|
|
|
2,
|
|
|
9,
|
|
|
25,
|
|
|
1.0,
|
|
|
10.0,
|
|
|
0.0,
|
|
|
6,
|
|
|
False,
|
|
|
False,
|
|
|
16,
|
|
|
5,
|
|
|
default_vae
|
|
|
],
|
|
|
[
|
|
|
"./img_examples/Example1.mp4",
|
|
|
"./img_examples/Example1.png",
|
|
|
0.0,
|
|
|
"View of the sea as far as the eye can see, from the seaside, a piece of land is barely visible on the horizon at the middle, the sky is radiant, reflections of the sun in the water, photorealistic, realistic, intricate details, 8k, insanely detailed",
|
|
|
"Missing arm, unrealistic position, blurred, blurry",
|
|
|
True,
|
|
|
42,
|
|
|
1,
|
|
|
640,
|
|
|
1,
|
|
|
9,
|
|
|
25,
|
|
|
1.0,
|
|
|
10.0,
|
|
|
0.0,
|
|
|
6,
|
|
|
True,
|
|
|
False,
|
|
|
16,
|
|
|
5,
|
|
|
default_vae
|
|
|
],
|
|
|
],
|
|
|
run_on_click = True,
|
|
|
fn = process,
|
|
|
inputs = [input_video, end_frame, end_frame_weight, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch],
|
|
|
outputs = [result_video, preview_image, progress_desc, progress_bar, start_button, end_button],
|
|
|
cache_examples = True,
|
|
|
)
|
|
|
|
|
|
|
|
|
ips = [input_video, end_frame, end_frame_weight, prompt, n_prompt, randomize_seed, seed, batch, resolution, total_second_length, latent_window_size, steps, cfg, gs, rs, gpu_memory_preservation, use_teacache, no_resize, mp4_crf, num_clean_frames, vae_batch]
|
|
|
start_button.click(fn=process, inputs=ips, outputs=[result_video, preview_image, progress_desc, progress_bar, start_button, end_button])
|
|
|
end_button.click(fn=end_process)
|
|
|
|
|
|
|
|
|
def handle_field_debug_change(input_video_debug_data, prompt_debug_data, total_second_length_debug_data):
|
|
|
global input_video_debug_value, prompt_debug_value, total_second_length_debug_value
|
|
|
input_video_debug_value = input_video_debug_data
|
|
|
prompt_debug_value = prompt_debug_data
|
|
|
total_second_length_debug_value = total_second_length_debug_data
|
|
|
return []
|
|
|
|
|
|
input_video_debug.upload(
|
|
|
fn=handle_field_debug_change,
|
|
|
inputs=[input_video_debug, prompt_debug, total_second_length_debug],
|
|
|
outputs=[]
|
|
|
)
|
|
|
|
|
|
prompt_debug.change(
|
|
|
fn=handle_field_debug_change,
|
|
|
inputs=[input_video_debug, prompt_debug, total_second_length_debug],
|
|
|
outputs=[]
|
|
|
)
|
|
|
|
|
|
total_second_length_debug.change(
|
|
|
fn=handle_field_debug_change,
|
|
|
inputs=[input_video_debug, prompt_debug, total_second_length_debug],
|
|
|
outputs=[]
|
|
|
)
|
|
|
|
|
|
block.launch(mcp_server=True, ssr_mode=False) |