Spaces:
Sleeping
Sleeping
| from fastapi import FastAPI | |
| from fastapi.responses import StreamingResponse | |
| from pydantic import BaseModel | |
| from transformers import ( | |
| AutoTokenizer, | |
| AutoModelForCausalLM, | |
| BitsAndBytesConfig, | |
| TextIteratorStreamer | |
| ) | |
| import torch | |
| import threading | |
| app = FastAPI() | |
| MODEL_NAME = "Qwen/Qwen2.5-Coder-7B" | |
| # ---- Quantization config (CPU safe) ---- | |
| bnb_config = BitsAndBytesConfig( | |
| load_in_4bit=True, | |
| bnb_4bit_compute_dtype=torch.float32, | |
| bnb_4bit_use_double_quant=True, | |
| bnb_4bit_quant_type="nf4" | |
| ) | |
| tokenizer = AutoTokenizer.from_pretrained( | |
| MODEL_NAME, | |
| trust_remote_code=True | |
| ) | |
| model = AutoModelForCausalLM.from_pretrained( | |
| MODEL_NAME, | |
| device_map="cpu", | |
| quantization_config=bnb_config, | |
| trust_remote_code=True | |
| ) | |
| class Prompt(BaseModel): | |
| message: str | |
| # ------------------------------------------------- | |
| # β NORMAL CHAT (UNCHANGED) | |
| # ------------------------------------------------- | |
| def chat(prompt: Prompt): | |
| inputs = tokenizer(prompt.message, return_tensors="pt") | |
| outputs = model.generate( | |
| **inputs, | |
| max_new_tokens=200, | |
| temperature=0.7, | |
| do_sample=True | |
| ) | |
| response = tokenizer.decode(outputs[0], skip_special_tokens=True) | |
| return {"response": response} | |
| # ------------------------------------------------- | |
| # π STREAMING CHAT (CHATGPT-LIKE) | |
| # ------------------------------------------------- | |
| def chat_stream(prompt: Prompt): | |
| inputs = tokenizer(prompt.message, return_tensors="pt") | |
| streamer = TextIteratorStreamer( | |
| tokenizer, | |
| skip_special_tokens=True, | |
| skip_prompt=True | |
| ) | |
| generation_kwargs = dict( | |
| **inputs, | |
| streamer=streamer, | |
| max_new_tokens=200, | |
| temperature=0.7, | |
| do_sample=True | |
| ) | |
| # Run generation in background thread | |
| thread = threading.Thread( | |
| target=model.generate, | |
| kwargs=generation_kwargs | |
| ) | |
| thread.start() | |
| def token_generator(): | |
| for token in streamer: | |
| yield token | |
| return StreamingResponse( | |
| token_generator(), | |
| media_type="text/plain" | |
| ) | |