Spaces:
Sleeping
Sleeping
File size: 29,008 Bytes
a79cd5c a75d5aa a79cd5c 8268047 a79cd5c dd75f3a a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa a79cd5c a75d5aa 8268047 a75d5aa a79cd5c b9eaae2 a75d5aa b9eaae2 a75d5aa b9eaae2 f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa 8268047 a75d5aa 8268047 f1dcef6 a75d5aa a79cd5c f1dcef6 a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa 8268047 a75d5aa f1dcef6 a75d5aa a79cd5c f1dcef6 a75d5aa a79cd5c a75d5aa f1dcef6 a75d5aa a79cd5c a75d5aa f1dcef6 a75d5aa f1dcef6 a75d5aa 57e6f0b a75d5aa fc6ed76 f1dcef6 a75d5aa f1dcef6 a75d5aa af14362 a75d5aa f1dcef6 a75d5aa d8471f7 a75d5aa f1dcef6 a75d5aa 44aee67 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa 44aee67 a75d5aa 44aee67 a75d5aa 44aee67 a75d5aa ee86917 44aee67 ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa ee86917 a75d5aa f1dcef6 44aee67 a75d5aa 44aee67 a75d5aa f1dcef6 a75d5aa f1dcef6 ee86917 f1dcef6 a75d5aa f1dcef6 a75d5aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 |
import os
from dotenv import load_dotenv
import gradio as gr
import google.generativeai as genai
from PIL import Image
import json
import asyncio
import threading
from typing import Optional, List, Dict, Any
import time
from functools import lru_cache
# Load environment variables
load_dotenv()
# ### 1. Enhanced Configuration with Error Handling
class APIManager:
"""Centralized API management with connection pooling and error handling."""
def __init__(self):
self.api_key = None
self.is_configured = False
self.models = {}
self.setup_api()
def setup_api(self):
"""Enhanced API setup with better error handling."""
try:
self.api_key = os.environ.get('GEMINI_API_KEY')
if not self.api_key:
raise ValueError("GEMINI_API_KEY not found in environment variables.")
genai.configure(api_key=self.api_key)
self.is_configured = True
print("π API Key configured successfully.")
# Pre-initialize models for better performance
self.initialize_models()
except Exception as e:
print(f"π΄ Error during API configuration: {e}")
self.is_configured = False
def initialize_models(self):
"""Pre-initialize models for better performance."""
try:
self.models = {
'vision': genai.GenerativeModel('gemini-2.5-pro',
system_instruction=VISION_SYSTEM_INSTRUCTION),
'initial': genai.GenerativeModel('gemini-2.5-flash-lite-preview-06-17',
system_instruction=PROMPT_ENGINEER_SYSTEM_INSTRUCTION),
'refiner': genai.GenerativeModel('gemini-2.5-pro',
system_instruction=PROMPT_REFINER_SYSTEM_INSTRUCTION),
'rewriter': genai.GenerativeModel('gemini-2.5-flash',
system_instruction=META_PROMPT_SYSTEM_INSTRUCTION)
}
except Exception as e:
print(f"β οΈ Warning: Could not pre-initialize models: {e}")
# Global API manager instance
api_manager = APIManager()
# ### 2. OPTIMIZED System Instructions - Short, Clear, High-Quality
VISION_SYSTEM_INSTRUCTION = """Extract key actionable insights from screenshots or descriptions in 3-4 bullet points:
β’ UI/UX elements and layout structure
β’ Content type and user intent
β’ Technical context and requirements
β’ Specific pain points or opportunities
Be concise, specific, and focus on elements that inform prompt creation."""
PROMPT_ENGINEER_SYSTEM_INSTRUCTION = """Create concise, high-performance prompts that maximize AI effectiveness.
REQUIREMENTS:
- Start with clear role definition
- Use specific, actionable instructions
- Include necessary context only
- Specify exact output format
- Keep under 150 words unless complexity demands more
OUTPUT: Single optimized prompt ready for immediate use."""
PROMPT_REFINER_SYSTEM_INSTRUCTION = """Refine the given prompt based on feedback while preserving core intent.
FOCUS:
- Address specific feedback points
- Maintain original purpose
- Improve clarity and effectiveness
- Optimize structure and language
OUTPUT: Single improved prompt that directly addresses the feedback."""
META_PROMPT_SYSTEM_INSTRUCTION = """Generate 3 distinct, improved variations of the input prompt.
VARIATION STRATEGY:
1. Enhanced clarity and structure
2. Different approach or perspective
3. Optimized for specific use case
OUTPUT FORMAT: Return ONLY valid JSON array of exactly 3 strings:
["Variation 1", "Variation 2", "Variation 3"]"""
# ### 3. Enhanced Processing Functions with Better Error Handling
def analyze_screenshot(pil_image: Image.Image) -> str:
"""Enhanced screenshot analysis with concise output."""
if not isinstance(pil_image, Image.Image):
return "Error: Invalid image provided."
if not api_manager.is_configured:
return "Error: API not configured. Please check your API key."
try:
model = api_manager.models.get('vision') or genai.GenerativeModel(
'gemini-2.0-flash-exp',
system_instruction=VISION_SYSTEM_INSTRUCTION
)
response = model.generate_content([
"Analyze this screenshot and extract key insights for prompt creation:",
pil_image
])
result = response.text.strip()
return result if result else "No meaningful content detected in the screenshot."
except Exception as e:
error_msg = f"Error in vision analysis: {str(e)}"
print(error_msg)
return error_msg
def analyze_text_description(text: str) -> str:
"""Analyze text description for context insights."""
if not text.strip():
return "Error: No text provided for analysis."
if not api_manager.is_configured:
return "Error: API not configured."
try:
model = api_manager.models.get('vision') or genai.GenerativeModel(
'gemini-2.0-flash-exp',
system_instruction=VISION_SYSTEM_INSTRUCTION
)
response = model.generate_content(f"Analyze this description for prompt creation insights:\n\n{text}")
result = response.text.strip()
return result if result else "Unable to extract meaningful insights from the description."
except Exception as e:
error_msg = f"Error in text analysis: {str(e)}"
print(error_msg)
return error_msg
def initial_prompt_stream(analysis_text: str, goal: str):
"""Enhanced streaming prompt generation with concise output."""
if not api_manager.is_configured:
yield "Error: API not configured. Please check your API key."
return
try:
model = api_manager.models.get('initial') or genai.GenerativeModel(
'gemini-2.0-flash-exp',
system_instruction=PROMPT_ENGINEER_SYSTEM_INSTRUCTION
)
# Construct concise prompt
user_goal = goal.strip() if goal else "Create an optimized prompt based on the analysis"
prompt = f"""CONTEXT: {analysis_text}
GOAL: {user_goal}
Create a concise, high-performance prompt that achieves this goal."""
final_prompt_full = ""
for chunk in model.generate_content(prompt, stream=True):
if chunk.text:
final_prompt_full += chunk.text
yield final_prompt_full.strip()
if not final_prompt_full.strip():
fallback = f"You are an expert assistant. {user_goal}. Provide clear, actionable guidance with specific examples."
yield fallback
except Exception as e:
error_msg = f"Error in prompt generation: {str(e)}"
print(error_msg)
yield error_msg
def refinement_prompt_stream(original_prompt: str, feedback: str):
"""Enhanced prompt refinement with concise output."""
if not api_manager.is_configured:
yield "Error: API not configured. Please check your API key."
return
try:
model = api_manager.models.get('refiner') or genai.GenerativeModel(
'gemini-2.0-flash-exp',
system_instruction=PROMPT_REFINER_SYSTEM_INSTRUCTION
)
refinement_prompt = f"""ORIGINAL: {original_prompt}
FEEDBACK: {feedback}
Refine the prompt based on this feedback."""
final_prompt_full = ""
for chunk in model.generate_content(refinement_prompt, stream=True):
if chunk.text:
final_prompt_full += chunk.text
yield final_prompt_full.strip()
if not final_prompt_full.strip():
yield original_prompt # Fallback to original
except Exception as e:
error_msg = f"Error in prompt refinement: {str(e)}"
print(error_msg)
yield error_msg
def rewrite_prompt_with_prewrite(original_prompt: str) -> List[str]:
"""Enhanced prompt rewriting with better JSON parsing."""
if not api_manager.is_configured:
return ["Error: API not configured. Please check your API key.", "", ""]
try:
model = api_manager.models.get('rewriter') or genai.GenerativeModel(
'gemini-2.0-flash-exp',
system_instruction=META_PROMPT_SYSTEM_INSTRUCTION
)
rewrite_prompt = f"""ORIGINAL PROMPT: {original_prompt}
Generate 3 improved variations. Output ONLY JSON array of 3 strings."""
response = model.generate_content(rewrite_prompt)
# Enhanced JSON parsing
response_text = response.text.strip()
# Clean up common formatting issues
response_text = response_text.replace("```json", "").replace("```text", "").replace("```", "").strip()
# Try to extract JSON if it's wrapped in other text
if not response_text.startswith('['):
import re
json_match = re.search(r'\[.*\]', response_text, re.DOTALL)
if json_match:
response_text = json_match.group(0)
variations = json.loads(response_text)
if isinstance(variations, list) and len(variations) >= 1:
# Ensure we have exactly 3 variations
while len(variations) < 3:
variations.append("")
return variations[:3]
return ["Error: AI returned an invalid format.", "", ""]
except json.JSONDecodeError:
return ["Error: Could not parse AI response as JSON.", "", ""]
except Exception as e:
error_msg = f"Error in prompt rewriting: {str(e)}"
print(error_msg)
return [error_msg, "", ""]
# ### 4. Enhanced Gradio Interface Functions
def create_enhanced_interface():
"""Create the enhanced Gradio interface."""
# Custom CSS for better styling
custom_css = """
.gradio-container {
max-width: 1200px !important;
margin: auto;
}
.generate-btn {
background: linear-gradient(45deg, #007bff, #0056b3) !important;
border: none !important;
color: white !important;
font-weight: 600 !important;
transition: all 0.3s ease !important;
}
.generate-btn:hover {
transform: translateY(-2px) !important;
box-shadow: 0 4px 12px rgba(0, 123, 255, 0.3) !important;
}
.status-indicator {
padding: 8px 16px;
border-radius: 20px;
font-size: 14px;
font-weight: 500;
margin: 8px 0;
}
.status-success {
background: #d4edda;
color: #155724;
border: 1px solid #c3e6cb;
}
.status-error {
background: #f8d7da;
color: #721c24;
border: 1px solid #f5c6cb;
}
.compact-box {
background: #f8f9fa;
border: 1px solid #dee2e6;
border-radius: 8px;
padding: 15px;
margin: 10px 0;
}
.prompt-box {
background: #e3f2fd;
border: 2px solid #2196f3;
border-radius: 12px;
padding: 20px;
margin: 15px 0;
font-family: 'Consolas', 'Monaco', monospace;
font-size: 14px;
line-height: 1.5;
}
"""
# Enhanced theme
theme = gr.themes.Soft(
primary_hue=gr.themes.colors.blue,
secondary_hue=gr.themes.colors.neutral,
neutral_hue=gr.themes.colors.slate,
font=(gr.themes.GoogleFont("Inter"), "ui-sans-serif", "system-ui", "sans-serif")
)
with gr.Blocks(theme=theme, css=custom_css, title="AI Prompt Engineer Pro") as interface:
# State management
analysis_state = gr.State()
first_prompt_state = gr.State()
# Header
gr.Markdown("""
# π SuperKontext - context is all you need
### Transform your ideas into crystal-clean prompts
""")
# Status indicator
with gr.Row():
with gr.Column():
if api_manager.is_configured:
gr.HTML('<div class="status-indicator status-success">β
API Connected & Ready</div>')
else:
gr.HTML('<div class="status-indicator status-error">β API Configuration Error</div>')
# Main interface
with gr.Row(equal_height=True):
# Input column
with gr.Column(scale=1, min_width=400):
gr.Markdown("### π Input Context")
# Screenshot section
with gr.Group():
gr.Markdown("#### πΈ Screenshot (Optional)")
image_input = gr.Image(
type="pil",
label="Upload Screenshot",
sources=['upload'],
interactive=True,
height=250
)
# Text description section
with gr.Group():
gr.Markdown("#### βοΈ Describe Your Task")
situation_input = gr.Textbox(
label="What do you need help with?",
placeholder="Example: Create a marketing email for a new product launch, Write code documentation, Analyze customer feedback data, etc.",
lines=5,
max_lines=8
)
with gr.Accordion("π― Specific Goal (Optional)", open=False):
goal_input = gr.Textbox(
label="Specific outcome you want",
placeholder="e.g., 'Generate 5 subject line options' or 'Create step-by-step instructions'",
lines=2
)
with gr.Row():
submit_btn = gr.Button(
"π Generate Prompt",
variant="primary",
scale=3,
elem_classes=["generate-btn"]
)
clear_btn = gr.Button("π Reset", scale=1)
# Output column
with gr.Column(scale=2, min_width=600):
# Context Analysis - Compact and focused
with gr.Group():
gr.Markdown("### π Context Analysis")
analysis_output = gr.Textbox(
label="Key Insights",
lines=4,
interactive=False,
show_copy_button=True,
placeholder="Context analysis will appear here...",
elem_classes=["compact-box"]
)
# Final Prompt - Highlighted and prominent
with gr.Group():
gr.Markdown("### β
Optimized Prompt")
final_prompt_output = gr.Textbox(
label="Your Crystal-Clear Prompt",
lines=8,
interactive=False,
show_copy_button=True,
placeholder="Your optimized prompt will appear here...",
elem_classes=["prompt-box"]
)
# Refinement interface - Streamlined
with gr.Row(visible=False) as satisfaction_row:
with gr.Column():
gr.Markdown("### π¨ Refinement Options")
with gr.Row():
like_btn = gr.Button("π Perfect!", variant="secondary", scale=1)
auto_refine_btn = gr.Button("π€ Auto-Refine", variant="primary", scale=1)
dislike_btn = gr.Button("βοΈ Custom Feedback", variant="secondary", scale=1)
# Auto-refinement section
with gr.Column(visible=False) as prewrite_col:
gr.Markdown("### π Choose Your Preferred Version")
prewrite_choices = gr.Radio(
label="Select the best variation:",
type="value",
interactive=True
)
select_version_btn = gr.Button("β
Use This Version", variant="primary")
# Manual feedback section
with gr.Column(visible=False) as feedback_col:
gr.Markdown("### π¬ Custom Refinement")
feedback_input = gr.Textbox(
label="How should we improve it?",
placeholder="e.g., 'Make it more specific', 'Add examples', 'Change tone to professional'",
lines=2
)
refine_btn = gr.Button("π οΈ Refine Prompt", variant="primary")
# ### Enhanced Interface Functions
def run_analysis_step(pil_image: Optional[Image.Image], situation_text: str):
"""Enhanced analysis step with concise output."""
# Reset UI state
yield {
satisfaction_row: gr.update(visible=False),
feedback_col: gr.update(visible=False),
prewrite_col: gr.update(visible=False),
analysis_output: "π Analyzing context...",
final_prompt_output: ""
}
# Validation
if not api_manager.is_configured:
yield {
analysis_output: "β Error: API Key not configured. Please check your GEMINI_API_KEY environment variable.",
final_prompt_output: "",
satisfaction_row: gr.update(visible=False),
feedback_col: gr.update(visible=False),
prewrite_col: gr.update(visible=False),
analysis_state: None
}
return
if pil_image is None and not situation_text.strip():
yield {
analysis_output: "β οΈ Please provide either a screenshot or task description to proceed.",
final_prompt_output: "",
satisfaction_row: gr.update(visible=False),
feedback_col: gr.update(visible=False),
prewrite_col: gr.update(visible=False),
analysis_state: None
}
return
# Perform analysis
try:
if pil_image and situation_text.strip():
# Both provided - analyze screenshot and add text context
screenshot_analysis = analyze_screenshot(pil_image)
analysis_text = f"SCREENSHOT: {screenshot_analysis}\n\nTEXT CONTEXT: {situation_text.strip()}"
elif pil_image:
# Only screenshot
analysis_text = analyze_screenshot(pil_image)
else:
# Only text description
analysis_text = analyze_text_description(situation_text.strip())
if not analysis_text or analysis_text.startswith("Error"):
analysis_text = analysis_text or "Unable to generate analysis. Please try again."
yield {
analysis_output: analysis_text,
final_prompt_output: "",
satisfaction_row: gr.update(visible=False),
feedback_col: gr.update(visible=False),
prewrite_col: gr.update(visible=False),
analysis_state: analysis_text
}
except Exception as e:
error_msg = f"β Error during analysis: {str(e)}"
print(error_msg)
yield {
analysis_output: error_msg,
final_prompt_output: "",
satisfaction_row: gr.update(visible=False),
feedback_col: gr.update(visible=False),
prewrite_col: gr.update(visible=False),
analysis_state: None
}
def run_streaming_generation(analysis: str, goal: str):
"""Enhanced streaming generation with concise output."""
if not analysis:
yield {
final_prompt_output: "β Error: No analysis available for prompt generation.",
first_prompt_state: None,
satisfaction_row: gr.update(visible=False)
}
return
yield {
final_prompt_output: "π Generating optimized prompt...",
satisfaction_row: gr.update(visible=False)
}
final_prompt_full = ""
for chunk in initial_prompt_stream(analysis, goal):
final_prompt_full = chunk
yield {final_prompt_output: final_prompt_full}
yield {
final_prompt_output: final_prompt_full,
first_prompt_state: final_prompt_full,
satisfaction_row: gr.update(visible=True)
}
def handle_auto_refine(original_prompt: str):
"""Enhanced auto-refinement with better user feedback."""
if not original_prompt:
return {
prewrite_col: gr.update(visible=False),
satisfaction_row: gr.update(visible=True),
feedback_col: gr.update(visible=False)
}
variations = rewrite_prompt_with_prewrite(original_prompt)
# Filter out empty variations
valid_variations = [v for v in variations if v.strip()]
if not valid_variations:
return {
prewrite_col: gr.update(visible=False),
satisfaction_row: gr.update(visible=True),
feedback_col: gr.update(visible=False)
}
return {
prewrite_col: gr.update(visible=True),
prewrite_choices: gr.update(choices=valid_variations, value=valid_variations[0]),
satisfaction_row: gr.update(visible=False),
feedback_col: gr.update(visible=False)
}
def select_rewritten_prompt(selected_prompt: str):
"""Enhanced prompt selection with validation."""
if not selected_prompt or not selected_prompt.strip():
return {
final_prompt_output: "β Error: No prompt selected.",
first_prompt_state: None,
satisfaction_row: gr.update(visible=False),
prewrite_col: gr.update(visible=False)
}
return {
final_prompt_output: selected_prompt,
first_prompt_state: selected_prompt,
satisfaction_row: gr.update(visible=True),
prewrite_col: gr.update(visible=False)
}
def handle_manual_feedback():
"""Show feedback input area."""
return {
feedback_col: gr.update(visible=True),
satisfaction_row: gr.update(visible=False),
prewrite_col: gr.update(visible=False)
}
def handle_like():
"""Hide refinement options when user is satisfied."""
return {
satisfaction_row: gr.update(visible=False),
feedback_col: gr.update(visible=False),
prewrite_col: gr.update(visible=False)
}
def refine_with_manual_feedback(original_prompt: str, feedback: str):
"""Enhanced manual refinement with concise output."""
if not feedback.strip():
yield {
final_prompt_output: original_prompt,
first_prompt_state: original_prompt,
satisfaction_row: gr.update(visible=True),
feedback_col: gr.update(visible=False)
}
return
yield {
final_prompt_output: "π οΈ Refining prompt based on your feedback...",
satisfaction_row: gr.update(visible=False)
}
final_prompt_full = ""
for chunk in refinement_prompt_stream(original_prompt, feedback):
final_prompt_full = chunk
yield {
final_prompt_output: final_prompt_full,
first_prompt_state: final_prompt_full
}
yield {
satisfaction_row: gr.update(visible=True),
feedback_col: gr.update(visible=False)
}
def clear_all():
"""Enhanced reset function with complete state clearing."""
return {
image_input: None,
situation_input: "",
goal_input: "",
analysis_output: "",
final_prompt_output: "",
satisfaction_row: gr.update(visible=False),
feedback_col: gr.update(visible=False),
prewrite_col: gr.update(visible=False),
prewrite_choices: gr.update(choices=[], value=None),
feedback_input: "",
analysis_state: None,
first_prompt_state: None
}
# Event handlers
analysis_outputs = [
satisfaction_row, feedback_col, prewrite_col,
analysis_output, final_prompt_output, analysis_state
]
streaming_outputs = [final_prompt_output, first_prompt_state, satisfaction_row]
# Event bindings
submit_btn.click(
fn=run_analysis_step,
inputs=[image_input, situation_input],
outputs=analysis_outputs,
show_progress="minimal"
).then(
fn=run_streaming_generation,
inputs=[analysis_state, goal_input],
outputs=streaming_outputs,
show_progress="minimal"
)
# Auto-submission on goal input
goal_input.submit(
fn=run_analysis_step,
inputs=[image_input, situation_input],
outputs=analysis_outputs,
show_progress="minimal"
).then(
fn=run_streaming_generation,
inputs=[analysis_state, goal_input],
outputs=streaming_outputs,
show_progress="minimal"
)
# Refinement handlers
like_btn.click(
fn=handle_like,
outputs=[satisfaction_row, feedback_col, prewrite_col]
)
auto_refine_btn.click(
fn=handle_auto_refine,
inputs=[first_prompt_state],
outputs=[prewrite_col, prewrite_choices, satisfaction_row, feedback_col]
)
dislike_btn.click(
fn=handle_manual_feedback,
outputs=[feedback_col, satisfaction_row, prewrite_col]
)
select_version_btn.click(
fn=select_rewritten_prompt,
inputs=[prewrite_choices],
outputs=[final_prompt_output, first_prompt_state, satisfaction_row, prewrite_col]
)
refine_btn.click(
fn=refine_with_manual_feedback,
inputs=[first_prompt_state, feedback_input],
outputs=[final_prompt_output, first_prompt_state, satisfaction_row, feedback_col]
)
feedback_input.submit(
fn=refine_with_manual_feedback,
inputs=[first_prompt_state, feedback_input],
outputs=[final_prompt_output, first_prompt_state, satisfaction_row, feedback_col]
)
# Reset functionality
clear_btn.click(
fn=clear_all,
outputs=[
image_input, situation_input, goal_input,
analysis_output, final_prompt_output, satisfaction_row,
feedback_col, prewrite_col, prewrite_choices, feedback_input,
analysis_state, first_prompt_state
]
)
return interface
# ### 5. Launch Configuration
if __name__ == "__main__":
# Create and launch the enhanced interface
demo = create_enhanced_interface()
# Launch with optimal settings
demo.launch(
debug=True,
share=False,
inbrowser=True,
server_name="0.0.0.0",
server_port=7860,
show_error=True,
favicon_path=None,
ssl_verify=False,
quiet=False
) |