Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from transformers import Wav2Vec2ForCTC, Wav2Vec2Processor | |
| import torch | |
| import librosa | |
| import os | |
| # Model details | |
| models = { | |
| "m3hrdadfi/wav2vec2-large-xlsr-persian-v3": None, | |
| "jonatasgrosman/wav2vec2-large-xlsr-53-persian": None, | |
| "AlirezaSaei/wav2vec2-large-xlsr-persian-fine-tuned": None | |
| } | |
| # Load models and processors | |
| def load_model(model_name): | |
| model = Wav2Vec2ForCTC.from_pretrained(model_name) | |
| processor = Wav2Vec2Processor.from_pretrained(model_name) | |
| return model, processor | |
| def transcribe(audio, model_name): | |
| if models[model_name] is None: | |
| models[model_name] = load_model(model_name) | |
| model, processor = models[model_name] | |
| audio_data, _ = librosa.load(audio, sr=16000) | |
| input_values = processor(audio_data, sampling_rate=16000, return_tensors="pt", padding=True).input_values | |
| with torch.no_grad(): | |
| logits = model(input_values).logits | |
| predicted_ids = torch.argmax(logits, dim=-1) | |
| transcription = processor.batch_decode(predicted_ids)[0] | |
| return transcription | |
| # Read HTML banner | |
| if os.path.exists("banner.html"): | |
| with open("banner.html", "r", encoding="utf-8") as file: | |
| banner = file.read() | |
| else: | |
| banner = "<h1 style='color: red; text-align: center;'>Banner file not found!</h1>" | |
| # Gradio app | |
| with gr.Blocks() as demo: | |
| gr.HTML(banner) | |
| gr.Markdown(""" | |
| <h1 style="color: #4CAF50; text-align: center;">Persian Speech-to-Text Models</h1> | |
| <p style="text-align: center;">Test the best Persian STT models in one place!</p> | |
| """) | |
| with gr.Row(): | |
| with gr.Column(): | |
| # Audio input (upload or record) | |
| audio_input = gr.Audio( | |
| type="filepath", label="Upload or Record Audio" | |
| ) | |
| model_dropdown = gr.Dropdown( | |
| choices=list(models.keys()), | |
| label="Select Model", | |
| value="m3hrdadfi/wav2vec2-large-xlsr-persian-v3" | |
| ) | |
| # Add Test Audio Button | |
| def use_test_audio(): | |
| return "Test-Audio.ogg" | |
| test_audio_button = gr.Button("Use Test Audio") | |
| with gr.Column(): | |
| output_text = gr.Textbox( | |
| label="Transcription", lines=5, placeholder="The transcription will appear here..." | |
| ) | |
| transcribe_button = gr.Button("Transcribe") | |
| test_audio_button.click( | |
| fn=use_test_audio, | |
| inputs=[], | |
| outputs=[audio_input] | |
| ) | |
| transcribe_button.click( | |
| fn=transcribe, | |
| inputs=[audio_input, model_dropdown], | |
| outputs=output_text | |
| ) | |
| gr.Markdown(""" | |
| <footer style="text-align: center; margin-top: 20px;"> | |
| <p>Created with ❤️ using Gradio and Hugging Face</p> | |
| </footer> | |
| """) | |
| demo.launch() | |