Spaces:
Sleeping
Sleeping
Commit
Β·
89ba8a1
1
Parent(s):
cba237d
Check point 4
Browse files
app.py
CHANGED
|
@@ -10,13 +10,12 @@ import torchaudio
|
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
from fastapi import FastAPI, APIRouter
|
| 13 |
-
from fastrtc import Stream, AsyncStreamHandler
|
| 14 |
import json
|
| 15 |
import asyncio
|
| 16 |
import uvicorn
|
| 17 |
from queue import Queue
|
| 18 |
import logging
|
| 19 |
-
from fastrtc import WebRTC
|
| 20 |
|
| 21 |
# Set up logging
|
| 22 |
logging.basicConfig(level=logging.INFO)
|
|
@@ -420,7 +419,7 @@ class RealtimeSpeakerDiarization:
|
|
| 420 |
# Setup recorder configuration
|
| 421 |
recorder_config = {
|
| 422 |
'spinner': False,
|
| 423 |
-
'use_microphone': False, #
|
| 424 |
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 425 |
'language': TRANSCRIPTION_LANGUAGE,
|
| 426 |
'silero_sensitivity': SILERO_SENSITIVITY,
|
|
@@ -430,7 +429,7 @@ class RealtimeSpeakerDiarization:
|
|
| 430 |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 431 |
'min_gap_between_recordings': 0,
|
| 432 |
'enable_realtime_transcription': True,
|
| 433 |
-
'realtime_processing_pause': 0.
|
| 434 |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 435 |
'on_realtime_transcription_update': self.live_text_detected,
|
| 436 |
'beam_size': FINAL_BEAM_SIZE,
|
|
@@ -448,7 +447,8 @@ class RealtimeSpeakerDiarization:
|
|
| 448 |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 449 |
self.transcription_thread.start()
|
| 450 |
|
| 451 |
-
|
|
|
|
| 452 |
|
| 453 |
except Exception as e:
|
| 454 |
logger.error(f"Error starting recording: {e}")
|
|
@@ -587,11 +587,17 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
| 587 |
return
|
| 588 |
|
| 589 |
# Extract audio data
|
| 590 |
-
|
|
|
|
|
|
|
|
|
|
| 591 |
|
| 592 |
# Convert to numpy array
|
| 593 |
if isinstance(audio_data, bytes):
|
| 594 |
audio_array = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
|
|
|
|
|
|
|
|
|
|
| 595 |
elif isinstance(audio_data, (list, tuple)):
|
| 596 |
audio_array = np.array(audio_data, dtype=np.float32)
|
| 597 |
else:
|
|
@@ -609,8 +615,16 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
| 609 |
chunk = np.array(self.audio_buffer[:self.buffer_size])
|
| 610 |
self.audio_buffer = self.audio_buffer[self.buffer_size:]
|
| 611 |
|
| 612 |
-
# Process
|
| 613 |
await self.process_audio_async(chunk)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 614 |
|
| 615 |
except Exception as e:
|
| 616 |
logger.error(f"Error in FastRTC receive: {e}")
|
|
@@ -627,6 +641,14 @@ class DiarizationHandler(AsyncStreamHandler):
|
|
| 627 |
)
|
| 628 |
except Exception as e:
|
| 629 |
logger.error(f"Error in async audio processing: {e}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 630 |
|
| 631 |
|
| 632 |
# Global instances
|
|
@@ -639,9 +661,14 @@ def initialize_system():
|
|
| 639 |
try:
|
| 640 |
success = diarization_system.initialize_models()
|
| 641 |
if success:
|
| 642 |
-
#
|
| 643 |
-
|
| 644 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 645 |
else:
|
| 646 |
return "β Failed to initialize system. Check logs for details."
|
| 647 |
except Exception as e:
|
|
@@ -658,7 +685,8 @@ def start_recording():
|
|
| 658 |
|
| 659 |
def on_start():
|
| 660 |
result = start_recording()
|
| 661 |
-
|
|
|
|
| 662 |
|
| 663 |
def stop_recording():
|
| 664 |
"""Stop recording and transcription"""
|
|
@@ -698,6 +726,15 @@ def get_status():
|
|
| 698 |
except Exception as e:
|
| 699 |
return f"Error getting status: {str(e)}"
|
| 700 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 701 |
# Create Gradio interface
|
| 702 |
def create_interface():
|
| 703 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
|
@@ -706,11 +743,17 @@ def create_interface():
|
|
| 706 |
|
| 707 |
with gr.Row():
|
| 708 |
with gr.Column(scale=2):
|
| 709 |
-
# Replace
|
| 710 |
-
audio_component =
|
| 711 |
-
|
| 712 |
-
|
| 713 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 714 |
)
|
| 715 |
|
| 716 |
# Conversation display
|
|
@@ -786,7 +829,8 @@ def create_interface():
|
|
| 786 |
|
| 787 |
def on_start():
|
| 788 |
result = start_recording()
|
| 789 |
-
|
|
|
|
| 790 |
|
| 791 |
def on_stop():
|
| 792 |
result = stop_recording()
|
|
@@ -814,7 +858,7 @@ def create_interface():
|
|
| 814 |
|
| 815 |
start_btn.click(
|
| 816 |
fn=on_start,
|
| 817 |
-
outputs=[status_output, start_btn, stop_btn]
|
| 818 |
)
|
| 819 |
|
| 820 |
stop_btn.click(
|
|
@@ -835,27 +879,12 @@ def create_interface():
|
|
| 835 |
|
| 836 |
# Auto-refresh conversation display every 1 second
|
| 837 |
conversation_timer = gr.Timer(1)
|
| 838 |
-
conversation_timer.tick(refresh_conversation, outputs=[conversation_output])
|
| 839 |
|
| 840 |
# Auto-refresh status every 2 seconds
|
| 841 |
status_timer = gr.Timer(2)
|
| 842 |
status_timer.tick(refresh_status, outputs=[status_output])
|
| 843 |
|
| 844 |
-
# Process audio from Gradio component
|
| 845 |
-
def process_audio_input(audio_data):
|
| 846 |
-
if audio_data is not None and diarization_system.is_running:
|
| 847 |
-
# Extract audio data
|
| 848 |
-
if isinstance(audio_data, tuple) and len(audio_data) >= 2:
|
| 849 |
-
sample_rate, audio_array = audio_data[0], audio_data[1]
|
| 850 |
-
diarization_system.process_audio_chunk(audio_array, sample_rate)
|
| 851 |
-
return get_conversation()
|
| 852 |
-
|
| 853 |
-
# Connect audio component to processing function
|
| 854 |
-
audio_component.stream(
|
| 855 |
-
fn=process_audio_input,
|
| 856 |
-
outputs=[conversation_output]
|
| 857 |
-
)
|
| 858 |
-
|
| 859 |
return interface
|
| 860 |
|
| 861 |
|
|
|
|
| 10 |
from scipy.spatial.distance import cosine
|
| 11 |
from RealtimeSTT import AudioToTextRecorder
|
| 12 |
from fastapi import FastAPI, APIRouter
|
| 13 |
+
from fastrtc import Stream, AsyncStreamHandler, WebRTC
|
| 14 |
import json
|
| 15 |
import asyncio
|
| 16 |
import uvicorn
|
| 17 |
from queue import Queue
|
| 18 |
import logging
|
|
|
|
| 19 |
|
| 20 |
# Set up logging
|
| 21 |
logging.basicConfig(level=logging.INFO)
|
|
|
|
| 419 |
# Setup recorder configuration
|
| 420 |
recorder_config = {
|
| 421 |
'spinner': False,
|
| 422 |
+
'use_microphone': False, # Must be False since we're using FastRTC
|
| 423 |
'model': FINAL_TRANSCRIPTION_MODEL,
|
| 424 |
'language': TRANSCRIPTION_LANGUAGE,
|
| 425 |
'silero_sensitivity': SILERO_SENSITIVITY,
|
|
|
|
| 429 |
'pre_recording_buffer_duration': PRE_RECORDING_BUFFER_DURATION,
|
| 430 |
'min_gap_between_recordings': 0,
|
| 431 |
'enable_realtime_transcription': True,
|
| 432 |
+
'realtime_processing_pause': 0.05, # Faster updates for live transcription
|
| 433 |
'realtime_model_type': REALTIME_TRANSCRIPTION_MODEL,
|
| 434 |
'on_realtime_transcription_update': self.live_text_detected,
|
| 435 |
'beam_size': FINAL_BEAM_SIZE,
|
|
|
|
| 447 |
self.transcription_thread = threading.Thread(target=self.run_transcription, daemon=True)
|
| 448 |
self.transcription_thread.start()
|
| 449 |
|
| 450 |
+
logger.info("Recording started with FastRTC integration")
|
| 451 |
+
return "Recording started successfully! Speak now..."
|
| 452 |
|
| 453 |
except Exception as e:
|
| 454 |
logger.error(f"Error starting recording: {e}")
|
|
|
|
| 587 |
return
|
| 588 |
|
| 589 |
# Extract audio data
|
| 590 |
+
if hasattr(frame, 'data'):
|
| 591 |
+
audio_data = frame.data
|
| 592 |
+
else:
|
| 593 |
+
audio_data = frame
|
| 594 |
|
| 595 |
# Convert to numpy array
|
| 596 |
if isinstance(audio_data, bytes):
|
| 597 |
audio_array = np.frombuffer(audio_data, dtype=np.int16).astype(np.float32) / 32768.0
|
| 598 |
+
elif isinstance(audio_data, tuple) and len(audio_data) >= 2:
|
| 599 |
+
sample_rate, data = audio_data
|
| 600 |
+
audio_array = np.array(data, dtype=np.float32)
|
| 601 |
elif isinstance(audio_data, (list, tuple)):
|
| 602 |
audio_array = np.array(audio_data, dtype=np.float32)
|
| 603 |
else:
|
|
|
|
| 615 |
chunk = np.array(self.audio_buffer[:self.buffer_size])
|
| 616 |
self.audio_buffer = self.audio_buffer[self.buffer_size:]
|
| 617 |
|
| 618 |
+
# Process both for speaker detection and feed to the recorder for transcription
|
| 619 |
await self.process_audio_async(chunk)
|
| 620 |
+
|
| 621 |
+
# If recorder exists, feed audio for transcription
|
| 622 |
+
if self.diarization_system.recorder:
|
| 623 |
+
# Convert to bytes for the recorder's audio buffer
|
| 624 |
+
audio_bytes = (chunk * 32768.0).astype(np.int16).tobytes()
|
| 625 |
+
if hasattr(self.diarization_system.recorder, '_handle_audio'):
|
| 626 |
+
# Send audio to the recorder's audio buffer
|
| 627 |
+
self.diarization_system.recorder._handle_audio(audio_bytes)
|
| 628 |
|
| 629 |
except Exception as e:
|
| 630 |
logger.error(f"Error in FastRTC receive: {e}")
|
|
|
|
| 641 |
)
|
| 642 |
except Exception as e:
|
| 643 |
logger.error(f"Error in async audio processing: {e}")
|
| 644 |
+
|
| 645 |
+
async def start_up(self):
|
| 646 |
+
"""Called when stream starts"""
|
| 647 |
+
logger.info("FastRTC stream handler started")
|
| 648 |
+
|
| 649 |
+
async def shutdown(self):
|
| 650 |
+
"""Called when stream ends"""
|
| 651 |
+
logger.info("FastRTC stream handler shutdown")
|
| 652 |
|
| 653 |
|
| 654 |
# Global instances
|
|
|
|
| 661 |
try:
|
| 662 |
success = diarization_system.initialize_models()
|
| 663 |
if success:
|
| 664 |
+
# Create a fresh handler that uses our diarization system
|
| 665 |
+
handler = DiarizationHandler(diarization_system)
|
| 666 |
+
|
| 667 |
+
# Update the Stream's handler
|
| 668 |
+
stream.handler = handler
|
| 669 |
+
|
| 670 |
+
logger.info("FastRTC handler initialized successfully")
|
| 671 |
+
return "β
System initialized successfully! Click 'Start' to begin recording."
|
| 672 |
else:
|
| 673 |
return "β Failed to initialize system. Check logs for details."
|
| 674 |
except Exception as e:
|
|
|
|
| 685 |
|
| 686 |
def on_start():
|
| 687 |
result = start_recording()
|
| 688 |
+
# When starting recording, update UI and return WebRTC component with autostart=True
|
| 689 |
+
return result, gr.update(interactive=False), gr.update(interactive=True), gr.update(autostart=True)
|
| 690 |
|
| 691 |
def stop_recording():
|
| 692 |
"""Stop recording and transcription"""
|
|
|
|
| 726 |
except Exception as e:
|
| 727 |
return f"Error getting status: {str(e)}"
|
| 728 |
|
| 729 |
+
def refresh_conversation():
|
| 730 |
+
"""Get the current conversation and update live transcription status"""
|
| 731 |
+
has_live = diarization_system.last_transcription != ""
|
| 732 |
+
status = "π’ **Live Transcription Status:** Active" if has_live else "π **Live Transcription Status:** Ready (No speech detected)"
|
| 733 |
+
if not diarization_system.is_running:
|
| 734 |
+
status = "π΄ **Live Transcription Status:** Not running"
|
| 735 |
+
|
| 736 |
+
return get_conversation(), status
|
| 737 |
+
|
| 738 |
# Create Gradio interface
|
| 739 |
def create_interface():
|
| 740 |
with gr.Blocks(title="Real-time Speaker Diarization", theme=gr.themes.Soft()) as interface:
|
|
|
|
| 743 |
|
| 744 |
with gr.Row():
|
| 745 |
with gr.Column(scale=2):
|
| 746 |
+
# Replace standard Gradio audio with FastRTC WebRTC component
|
| 747 |
+
audio_component = WebRTC(
|
| 748 |
+
stream=stream,
|
| 749 |
+
label="Audio Input (FastRTC)",
|
| 750 |
+
show_audio_waveform=True,
|
| 751 |
+
autostart=False,
|
| 752 |
+
)
|
| 753 |
+
|
| 754 |
+
# Add live transcription status indicator
|
| 755 |
+
live_transcription_status = gr.Markdown(
|
| 756 |
+
"π΄ **Live Transcription Status:** Waiting to initialize...",
|
| 757 |
)
|
| 758 |
|
| 759 |
# Conversation display
|
|
|
|
| 829 |
|
| 830 |
def on_start():
|
| 831 |
result = start_recording()
|
| 832 |
+
# When starting recording, update UI and return WebRTC component with autostart=True
|
| 833 |
+
return result, gr.update(interactive=False), gr.update(interactive=True), gr.update(autostart=True)
|
| 834 |
|
| 835 |
def on_stop():
|
| 836 |
result = stop_recording()
|
|
|
|
| 858 |
|
| 859 |
start_btn.click(
|
| 860 |
fn=on_start,
|
| 861 |
+
outputs=[status_output, start_btn, stop_btn, audio_component]
|
| 862 |
)
|
| 863 |
|
| 864 |
stop_btn.click(
|
|
|
|
| 879 |
|
| 880 |
# Auto-refresh conversation display every 1 second
|
| 881 |
conversation_timer = gr.Timer(1)
|
| 882 |
+
conversation_timer.tick(refresh_conversation, outputs=[conversation_output, live_transcription_status])
|
| 883 |
|
| 884 |
# Auto-refresh status every 2 seconds
|
| 885 |
status_timer = gr.Timer(2)
|
| 886 |
status_timer.tick(refresh_status, outputs=[status_output])
|
| 887 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 888 |
return interface
|
| 889 |
|
| 890 |
|