AliInamdar commited on
Commit
e1a0db6
Β·
verified Β·
1 Parent(s): c7cbcff

Create app.py

Browse files
Files changed (1) hide show
  1. app.py +51 -0
app.py ADDED
@@ -0,0 +1,51 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import streamlit as st
2
+ import pandas as pd
3
+ from sklearn.model_selection import train_test_split
4
+ from sklearn.ensemble import RandomForestClassifier
5
+ from sklearn.metrics import accuracy_score, classification_report
6
+ from sklearn.preprocessing import StandardScaler
7
+
8
+ st.set_page_config(page_title="Random Forest Diabetes Classifier", layout="centered")
9
+ st.title("🌲 Random Forest Classifier - Diabetes Prediction")
10
+
11
+ uploaded_file = st.file_uploader("πŸ“‚ Upload your diabetes CSV dataset", type=["csv"])
12
+
13
+ if uploaded_file:
14
+ df = pd.read_csv(uploaded_file)
15
+ st.success("βœ… File loaded successfully!")
16
+ st.write("### Preview of Dataset:")
17
+ st.dataframe(df.head())
18
+
19
+ all_columns = df.columns.tolist()
20
+
21
+ target_column = st.selectbox("🎯 Select the target column (diabetes outcome)", all_columns)
22
+ feature_columns = st.multiselect("πŸ› οΈ Select feature columns", [col for col in all_columns if col != target_column])
23
+
24
+ if st.button("πŸš€ Run Random Forest Classifier"):
25
+ try:
26
+ X = df[feature_columns]
27
+ y = df[target_column]
28
+
29
+ X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)
30
+
31
+ scaler = StandardScaler()
32
+ X_train = scaler.fit_transform(X_train)
33
+ X_test = scaler.transform(X_test)
34
+
35
+ model = RandomForestClassifier(n_estimators=100, random_state=42)
36
+ model.fit(X_train, y_train)
37
+ y_pred = model.predict(X_test)
38
+
39
+ accuracy = accuracy_score(y_test, y_pred)
40
+ report = classification_report(y_test, y_pred, output_dict=False)
41
+
42
+ st.write("### βœ… Accuracy:")
43
+ st.write(f"{accuracy * 100:.2f}%")
44
+
45
+ st.write("### πŸ“‹ Classification Report:")
46
+ st.code(report)
47
+
48
+ except Exception as e:
49
+ st.error(f"❌ An error occurred: {e}")
50
+ else:
51
+ st.info("πŸ‘ˆ Upload a CSV file to begin.")