|
|
|
|
|
|
|
|
import gradio as gr |
|
|
import torch |
|
|
import torch.nn as nn |
|
|
from transformers import AutoModelForImageClassification, AutoImageProcessor |
|
|
from huggingface_hub import hf_hub_download |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
class MultiHeadContentModerator(nn.Module): |
|
|
def __init__(self, base_model_name="Falconsai/nsfw_image_detection", num_violence_labels=2): |
|
|
super().__init__() |
|
|
original_model = AutoModelForImageClassification.from_pretrained(base_model_name) |
|
|
hidden_size = original_model.config.hidden_size |
|
|
|
|
|
self.vit = original_model.vit |
|
|
self.nsfw_classifier = original_model.classifier |
|
|
self.violence_classifier = nn.Linear(hidden_size, num_violence_labels) |
|
|
|
|
|
|
|
|
self.nsfw_id2label = {0: 'normal', 1: 'nsfw'} |
|
|
self.violence_id2label = {0: 'safe', 1: 'violence'} |
|
|
|
|
|
def forward(self, pixel_values, task='both'): |
|
|
outputs = self.vit(pixel_values=pixel_values) |
|
|
pooled_output = outputs.last_hidden_state[:, 0] |
|
|
|
|
|
if task == 'both': |
|
|
return { |
|
|
'nsfw': self.nsfw_classifier(pooled_output), |
|
|
'violence': self.violence_classifier(pooled_output) |
|
|
} |
|
|
elif task == 'nsfw': |
|
|
return self.nsfw_classifier(pooled_output) |
|
|
elif task == 'violence': |
|
|
return self.violence_classifier(pooled_output) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
MODEL_ID = "Ali7880/multihead-content-moderator" |
|
|
|
|
|
|
|
|
checkpoint_path = hf_hub_download(MODEL_ID, "multihead_model.pt") |
|
|
checkpoint = torch.load(checkpoint_path, map_location='cpu', weights_only=False) |
|
|
|
|
|
|
|
|
model = MultiHeadContentModerator( |
|
|
base_model_name=checkpoint['base_model'], |
|
|
num_violence_labels=checkpoint['num_violence_labels'] |
|
|
) |
|
|
model.load_state_dict(checkpoint['model_state_dict']) |
|
|
model.violence_id2label = checkpoint['violence_id2label'] |
|
|
model.nsfw_id2label = checkpoint['nsfw_id2label'] |
|
|
model.eval() |
|
|
|
|
|
processor = AutoImageProcessor.from_pretrained(MODEL_ID) |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
def moderate_image(image): |
|
|
if image is None: |
|
|
return None, None, "Please upload an image" |
|
|
|
|
|
|
|
|
inputs = processor(images=image, return_tensors="pt") |
|
|
|
|
|
|
|
|
with torch.no_grad(): |
|
|
outputs = model(inputs['pixel_values'], task='both') |
|
|
nsfw_probs = torch.softmax(outputs['nsfw'], dim=-1).numpy()[0] |
|
|
violence_probs = torch.softmax(outputs['violence'], dim=-1).numpy()[0] |
|
|
|
|
|
|
|
|
nsfw_results = {model.nsfw_id2label[i]: float(p) for i, p in enumerate(nsfw_probs)} |
|
|
violence_results = {model.violence_id2label[i]: float(p) for i, p in enumerate(violence_probs)} |
|
|
|
|
|
|
|
|
is_nsfw = nsfw_probs.argmax() == 1 |
|
|
is_violent = violence_probs.argmax() == 1 |
|
|
|
|
|
flags = [] |
|
|
if is_nsfw: |
|
|
flags.append(f"NSFW ({nsfw_results.get('nsfw', 0):.0%})") |
|
|
if is_violent: |
|
|
flags.append(f"Violence ({violence_results.get('violence', 0):.0%})") |
|
|
|
|
|
if flags: |
|
|
verdict = "β UNSAFE - " + ", ".join(flags) |
|
|
else: |
|
|
verdict = f"β
SAFE (Normal: {nsfw_results.get('normal', 0):.0%}, Safe: {violence_results.get('safe', 0):.0%})" |
|
|
|
|
|
return nsfw_results, violence_results, verdict |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
demo = gr.Interface( |
|
|
fn=moderate_image, |
|
|
inputs=gr.Image(type="pil", label="Upload Image"), |
|
|
outputs=[ |
|
|
gr.Label(label="NSFW Detection", num_top_classes=2), |
|
|
gr.Label(label="Violence Detection", num_top_classes=2), |
|
|
gr.Textbox(label="Overall Verdict") |
|
|
], |
|
|
title="π‘οΈ Multi-Head Content Moderator", |
|
|
description="Upload an image to check for NSFW and Violence content simultaneously." |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
demo.launch() |