Update app.py
Browse files
app.py
CHANGED
|
@@ -12,25 +12,16 @@ client = Groq(
|
|
| 12 |
model_name = "llama-3.1-70b-versatile"
|
| 13 |
chat_groq = ChatGroq(model=model_name)
|
| 14 |
|
| 15 |
-
def transcribe_audio(
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
|
| 22 |
-
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
model="whisper-large-v3",
|
| 26 |
-
response_format="json",
|
| 27 |
-
temperature=0.0
|
| 28 |
-
)
|
| 29 |
-
print(f"Respuesta de transcripci贸n: {transcription}")
|
| 30 |
-
transcription_text = transcription.text
|
| 31 |
-
except Exception as e:
|
| 32 |
-
print(f"Error en transcripci贸n de audio: {e}")
|
| 33 |
-
return transcription_text
|
| 34 |
|
| 35 |
|
| 36 |
def extract_text_from_pdf(pdf_path):
|
|
@@ -79,7 +70,7 @@ def organize_clinical_record(current_text, transcription_text, pdf_text):
|
|
| 79 |
{clinical_record_template}
|
| 80 |
|
| 81 |
Borrador Actual del Registro Cl铆nico:
|
| 82 |
-
{
|
| 83 |
|
| 84 |
Nueva Informaci贸n de Audio:
|
| 85 |
{transcription_text}
|
|
@@ -91,52 +82,16 @@ def organize_clinical_record(current_text, transcription_text, pdf_text):
|
|
| 91 |
"""
|
| 92 |
|
| 93 |
organized_text = chat_groq.invoke(prompt)
|
| 94 |
-
return organized_text
|
| 95 |
-
|
| 96 |
-
def process_input(audio_filepath, pdfs, current_text):
|
| 97 |
-
transcription_text = transcribe_audio(audio_filepath)
|
| 98 |
-
# Definimos el l铆mite m谩ximo de palabras
|
| 99 |
-
max_words_per_prompt = 4500
|
| 100 |
-
debug_info = ""
|
| 101 |
|
| 102 |
-
|
| 103 |
-
|
|
|
|
| 104 |
if pdfs:
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
else:
|
| 110 |
-
debug_info += "No se proporcionaron PDFs.\n"
|
| 111 |
-
|
| 112 |
-
# Combinamos los textos y contamos las palabras
|
| 113 |
-
updated_text = current_text
|
| 114 |
-
combined_texts = []
|
| 115 |
-
total_words = len(updated_text.split()) + len(transcription_text.split())
|
| 116 |
-
|
| 117 |
-
for pdf_name, pdf_content in pdf_texts:
|
| 118 |
-
pdf_words = len(pdf_content.split())
|
| 119 |
-
if total_words + pdf_words > max_words_per_prompt:
|
| 120 |
-
# Procesamos los textos actuales
|
| 121 |
-
pdf_text_combined = "\n".join([f"Contenido del PDF ({name}):\n{content}" for name, content in combined_texts])
|
| 122 |
-
updated_text = organize_clinical_record(updated_text, transcription_text, pdf_text_combined)
|
| 123 |
-
debug_info += f"Procesado lote de PDFs: {[name for name, _ in combined_texts]}\n"
|
| 124 |
-
# Reiniciamos los textos
|
| 125 |
-
combined_texts = [(pdf_name, pdf_content)]
|
| 126 |
-
total_words = len(updated_text.split()) + len(transcription_text.split()) + pdf_words
|
| 127 |
-
else:
|
| 128 |
-
combined_texts.append((pdf_name, pdf_content))
|
| 129 |
-
total_words += pdf_words
|
| 130 |
-
|
| 131 |
-
# Procesamos el 煤ltimo lote si hay PDFs pendientes
|
| 132 |
-
if combined_texts:
|
| 133 |
-
pdf_text_combined = "\n".join([f"Contenido del PDF ({name}):\n{content}" for name, content in combined_texts])
|
| 134 |
-
updated_text = organize_clinical_record(updated_text, transcription_text, pdf_text_combined)
|
| 135 |
-
debug_info += f"Procesado lote de PDFs: {[name for name, _ in combined_texts]}\n"
|
| 136 |
-
|
| 137 |
-
debug_info += f"Transcripci贸n de Audio: {transcription_text}\n"
|
| 138 |
-
|
| 139 |
-
return updated_text, debug_info
|
| 140 |
|
| 141 |
theme = gr.themes.Base(
|
| 142 |
primary_hue=gr.themes.Color(
|
|
@@ -149,15 +104,7 @@ theme = gr.themes.Base(
|
|
| 149 |
neutral_hue="neutral",
|
| 150 |
)
|
| 151 |
|
| 152 |
-
|
| 153 |
-
|
| 154 |
-
|
| 155 |
-
with gr.Blocks(theme=theme) as iface:
|
| 156 |
-
gr.Markdown("# Aplicaci贸n de Procesamiento de Audio y PDFs")
|
| 157 |
-
|
| 158 |
-
iterative_output = gr.Textbox(
|
| 159 |
-
label="Registro Cl铆nico Organizado",
|
| 160 |
-
value="""
|
| 161 |
MOTIVO DE CONSULTA:
|
| 162 |
|
| 163 |
ENFERMEDAD ACTUAL:
|
|
@@ -178,13 +125,19 @@ with gr.Blocks(theme=theme) as iface:
|
|
| 178 |
** Medicamentos:
|
| 179 |
|
| 180 |
AYUDAS DIAGNOSTICAS:
|
| 181 |
-
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 182 |
lines=20,
|
| 183 |
)
|
| 184 |
# Move the State inside the Blocks context
|
| 185 |
-
current_state = gr.State(value=iterative_output
|
| 186 |
-
|
| 187 |
-
audio_filepath = gr.Audio(sources=["microphone"], type="filepath", label="Entrada de Audio")
|
| 188 |
pdf_files = gr.File(file_types=[".pdf"], label="Subir PDFs (puedes subir m煤ltiples archivos)", file_count="multiple")
|
| 189 |
debug_output = gr.Textbox(label="Informaci贸n de Depuraci贸n", lines=10)
|
| 190 |
|
|
|
|
| 12 |
model_name = "llama-3.1-70b-versatile"
|
| 13 |
chat_groq = ChatGroq(model=model_name)
|
| 14 |
|
| 15 |
+
def transcribe_audio(audio):
|
| 16 |
+
filename = audio
|
| 17 |
+
with open(filename, "rb") as file:
|
| 18 |
+
transcription = client.audio.transcriptions.create(
|
| 19 |
+
file=(filename, file.read()),
|
| 20 |
+
model="whisper-large-v3",
|
| 21 |
+
response_format="json",
|
| 22 |
+
temperature=0.0
|
| 23 |
+
)
|
| 24 |
+
return transcription.text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 25 |
|
| 26 |
|
| 27 |
def extract_text_from_pdf(pdf_path):
|
|
|
|
| 70 |
{clinical_record_template}
|
| 71 |
|
| 72 |
Borrador Actual del Registro Cl铆nico:
|
| 73 |
+
{iterative_output}
|
| 74 |
|
| 75 |
Nueva Informaci贸n de Audio:
|
| 76 |
{transcription_text}
|
|
|
|
| 82 |
"""
|
| 83 |
|
| 84 |
organized_text = chat_groq.invoke(prompt)
|
| 85 |
+
return organized_text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 86 |
|
| 87 |
+
def process_input(audio, pdfs):
|
| 88 |
+
transcription_text = transcribe_audio(audio)
|
| 89 |
+
pdf_text = ''
|
| 90 |
if pdfs:
|
| 91 |
+
pdf_text = extract_texts_from_pdfs(pdfs)
|
| 92 |
+
combined_text = transcription_text + "\n" + pdf_text
|
| 93 |
+
organized_record = organize_clinical_record(combined_text)
|
| 94 |
+
return organized_record.content
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
|
| 96 |
theme = gr.themes.Base(
|
| 97 |
primary_hue=gr.themes.Color(
|
|
|
|
| 104 |
neutral_hue="neutral",
|
| 105 |
)
|
| 106 |
|
| 107 |
+
iterative_output = """
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
MOTIVO DE CONSULTA:
|
| 109 |
|
| 110 |
ENFERMEDAD ACTUAL:
|
|
|
|
| 125 |
** Medicamentos:
|
| 126 |
|
| 127 |
AYUDAS DIAGNOSTICAS:
|
| 128 |
+
"""
|
| 129 |
+
|
| 130 |
+
with gr.Blocks(theme=theme) as iface:
|
| 131 |
+
gr.Markdown("# Aplicaci贸n de Procesamiento de Audio y PDFs")
|
| 132 |
+
|
| 133 |
+
iterative_output = gr.Textbox(
|
| 134 |
+
label="Registro Cl铆nico Organizado",
|
| 135 |
+
value= iterative_output,
|
| 136 |
lines=20,
|
| 137 |
)
|
| 138 |
# Move the State inside the Blocks context
|
| 139 |
+
current_state = gr.State(value=iterative_output)
|
| 140 |
+
audio = gr.Audio(sources=["microphone"], type="filepath", label="Entrada de Audio")
|
|
|
|
| 141 |
pdf_files = gr.File(file_types=[".pdf"], label="Subir PDFs (puedes subir m煤ltiples archivos)", file_count="multiple")
|
| 142 |
debug_output = gr.Textbox(label="Informaci贸n de Depuraci贸n", lines=10)
|
| 143 |
|