Spaces:
Runtime error
Runtime error
Create app.py
Browse files
app.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# --- Import Libraries ---
|
| 2 |
+
import warnings
|
| 3 |
+
warnings.filterwarnings("ignore")
|
| 4 |
+
from transformers import pipeline
|
| 5 |
+
import matplotlib.pyplot as plt
|
| 6 |
+
import numpy as np
|
| 7 |
+
import openai
|
| 8 |
+
import os
|
| 9 |
+
import json
|
| 10 |
+
import re
|
| 11 |
+
|
| 12 |
+
# Import Langchain components
|
| 13 |
+
from langchain_core.prompts import ChatPromptTemplate
|
| 14 |
+
from langchain_openai import ChatOpenAI
|
| 15 |
+
from dotenv import load_dotenv
|
| 16 |
+
|
| 17 |
+
# --- Environment Setup ---
|
| 18 |
+
load_dotenv()
|
| 19 |
+
api_key = os.getenv("OPENAI_API_KEY")
|
| 20 |
+
# Ensure the API key is set for libraries that rely on this convention
|
| 21 |
+
os.environ["OPENAI_API_KEY"] = api_key
|
| 22 |
+
|
| 23 |
+
# --- Model and Problem Definition ---
|
| 24 |
+
|
| 25 |
+
# Define the code generation models to compare
|
| 26 |
+
models = [
|
| 27 |
+
"Salesforce/codegen-350m-mono",
|
| 28 |
+
"HuggingFaceTB/SmolLM-360M",
|
| 29 |
+
"EleutherAI/gpt-neo-125M"
|
| 30 |
+
]
|
| 31 |
+
|
| 32 |
+
# Create the Prompt Template for evaluation using an OpenAI model (e.g., gpt-4o)
|
| 33 |
+
model = ChatOpenAI(model_name="gpt-4o", temperature=0)
|
| 34 |
+
|
| 35 |
+
# Define a code generation problem for Testing our Evaluation Framework
|
| 36 |
+
problem_statement = "Write a Python code that finds the longest word in a sentence."
|
| 37 |
+
|
| 38 |
+
# --- Helper Functions ---
|
| 39 |
+
|
| 40 |
+
def extract_json_from_evaluation(evaluation_text):
|
| 41 |
+
"""
|
| 42 |
+
Extracts the JSON object from the given evaluation text using a regular expression.
|
| 43 |
+
|
| 44 |
+
Parameters:
|
| 45 |
+
evaluation_text (str): The text containing the evaluation, including the JSON object.
|
| 46 |
+
|
| 47 |
+
Returns:
|
| 48 |
+
dict: The extracted JSON object as a dictionary, or None on failure.
|
| 49 |
+
"""
|
| 50 |
+
import re
|
| 51 |
+
import json
|
| 52 |
+
|
| 53 |
+
# Use regular expression to find the JSON object within the text, enclosed in ```json ... ```
|
| 54 |
+
# re.DOTALL is important to allow the '.' to match newlines
|
| 55 |
+
match = re.search(r'```json\n?(.*?)\n?```', evaluation_text, re.DOTALL)
|
| 56 |
+
|
| 57 |
+
if match:
|
| 58 |
+
json_str = match.group(1).strip()
|
| 59 |
+
try:
|
| 60 |
+
# Parse the JSON string into a dictionary
|
| 61 |
+
json_data = json.loads(json_str)
|
| 62 |
+
return json_data
|
| 63 |
+
except json.JSONDecodeError:
|
| 64 |
+
print("Error: Failed to decode JSON.")
|
| 65 |
+
return None
|
| 66 |
+
else:
|
| 67 |
+
print("Error: No JSON object found in the text.")
|
| 68 |
+
return None
|
| 69 |
+
|
| 70 |
+
def evaluate_code(question, code):
|
| 71 |
+
"""
|
| 72 |
+
Function to evaluate generated code using OpenAI GPT API (placeholder).
|
| 73 |
+
The evaluation model provides scores on several criteria in a JSON format.
|
| 74 |
+
|
| 75 |
+
Args:
|
| 76 |
+
question (str): The coding problem statement.
|
| 77 |
+
code (str): The generated Python code.
|
| 78 |
+
|
| 79 |
+
Returns:
|
| 80 |
+
dict: The extracted scores, or None if evaluation fails.
|
| 81 |
+
"""
|
| 82 |
+
promptstr = f'''
|
| 83 |
+
You are a code reviewer who evaluates a given Python Code against a given Problem.
|
| 84 |
+
The coding problem is as follows: {question}
|
| 85 |
+
Evaluate the following Python Code for correctness and quality against the given problem:
|
| 86 |
+
{code}
|
| 87 |
+
Provide scores on a scale of 1 to 5 for the following criteria:
|
| 88 |
+
1. Correctness: How correct is the code in terms of logic and output against the given problem?
|
| 89 |
+
2. Efficiency: How efficient is the solution in terms of execution?
|
| 90 |
+
3. Readability: How readable and well-structured is the code?
|
| 91 |
+
4. Best Practices: How well does the code follow coding best practices?
|
| 92 |
+
5. Comments: How well are the code and logic explained with comments?
|
| 93 |
+
Return only as a JSON object with the criteria and the scores enclosed in with ```json ... ``` tag and nothing else.
|
| 94 |
+
'''
|
| 95 |
+
|
| 96 |
+
# Use LangChain to invoke the model
|
| 97 |
+
# Note: The original images used a placeholder `chain` object and `ChatPromptTemplate`.
|
| 98 |
+
# I'll simplify the direct prompt passing for this compilation, assuming 'model' is the ChatOpenAI instance.
|
| 99 |
+
|
| 100 |
+
# Define a simple template for direct text passing to the model
|
| 101 |
+
template = ChatPromptTemplate.from_messages([
|
| 102 |
+
("system", "You are a helpful code reviewer that responds only with a JSON object enclosed in ```json ... ``` tags."),
|
| 103 |
+
("user", "{prompt_text}")
|
| 104 |
+
])
|
| 105 |
+
|
| 106 |
+
chain = template | model
|
| 107 |
+
|
| 108 |
+
response = chain.invoke({"prompt_text": promptstr})
|
| 109 |
+
|
| 110 |
+
print("-" * 30 + " GENERATED EVALUATION " + "-" * 30)
|
| 111 |
+
print(response.content.strip())
|
| 112 |
+
print("-" * 80)
|
| 113 |
+
|
| 114 |
+
# Extract the scores from the response
|
| 115 |
+
scores = extract_json_from_evaluation(response.content.strip())
|
| 116 |
+
|
| 117 |
+
return scores
|
| 118 |
+
|
| 119 |
+
def visualize_scores(evaluation_results):
|
| 120 |
+
"""
|
| 121 |
+
Visualizes the evaluation scores for different models using a grouped bar chart.
|
| 122 |
+
|
| 123 |
+
Args:
|
| 124 |
+
evaluation_results (list): A list of dictionaries, where each dict contains
|
| 125 |
+
model results, including 'Scores'.
|
| 126 |
+
"""
|
| 127 |
+
# Extract the criteria (assuming all models have the same set)
|
| 128 |
+
if not evaluation_results:
|
| 129 |
+
print("No results to visualize.")
|
| 130 |
+
return
|
| 131 |
+
|
| 132 |
+
criteria = list(evaluation_results[0]['Scores'].keys())
|
| 133 |
+
num_criteria = len(criteria)
|
| 134 |
+
num_models = len(evaluation_results)
|
| 135 |
+
bar_width = 0.2
|
| 136 |
+
|
| 137 |
+
# Generate a color map for different models
|
| 138 |
+
colors = plt.cm.viridis(np.linspace(0, 1, num_models))
|
| 139 |
+
|
| 140 |
+
# Set up the bar chart
|
| 141 |
+
fig, ax = plt.subplots(figsize=(12, 6))
|
| 142 |
+
|
| 143 |
+
# Generate bars for each model
|
| 144 |
+
for i, result in enumerate(evaluation_results):
|
| 145 |
+
# Extract scores in the order of criteria
|
| 146 |
+
model_scores = [result['Scores'][c] for c in criteria]
|
| 147 |
+
|
| 148 |
+
# Calculate bar positions
|
| 149 |
+
# np.arange(num_criteria) gives [0, 1, 2, ...]
|
| 150 |
+
# bar_width * i shifts the group of bars for the current model
|
| 151 |
+
bar_positions = np.arange(num_criteria) + bar_width * i
|
| 152 |
+
|
| 153 |
+
ax.bar(bar_positions, model_scores, bar_width, label=f'Model {i + 1} - {result.get("model_name", "Unknown")}', color=colors[i])
|
| 154 |
+
|
| 155 |
+
# Set chart labels and title
|
| 156 |
+
ax.set_xlabel('Evaluation Criteria')
|
| 157 |
+
ax.set_ylabel('Scores (1 to 5)')
|
| 158 |
+
ax.set_title('Evaluation Scores for Code Generation Models')
|
| 159 |
+
|
| 160 |
+
# Set X-axis ticks to be centered under the groups of bars
|
| 161 |
+
ax.set_xticks(np.arange(num_criteria) + bar_width * (num_models / 2 - 0.5))
|
| 162 |
+
ax.set_xticklabels(criteria, rotation=45, ha='right')
|
| 163 |
+
|
| 164 |
+
ax.legend()
|
| 165 |
+
|
| 166 |
+
# Display the chart
|
| 167 |
+
plt.tight_layout()
|
| 168 |
+
plt.show()
|
| 169 |
+
|
| 170 |
+
# --- Main Evaluation Loop ---
|
| 171 |
+
|
| 172 |
+
print("Starting LLM Code Generation and Evaluation...")
|
| 173 |
+
results = []
|
| 174 |
+
for model_name in models:
|
| 175 |
+
print("\n" + "=" * 80)
|
| 176 |
+
print(f"Evaluating Model: {model_name}")
|
| 177 |
+
print("=" * 80)
|
| 178 |
+
|
| 179 |
+
# Load the text-generation pipeline for the current model
|
| 180 |
+
# device=-1 indicates using CPU (change to 0 or other for specific GPU)
|
| 181 |
+
generator = pipeline("text-generation", model=model_name, device=-1)
|
| 182 |
+
|
| 183 |
+
# Generate code
|
| 184 |
+
# We pass the problem statement directly as the prompt
|
| 185 |
+
generated_code_output = generator(problem_statement, max_length=200, do_sample=False)
|
| 186 |
+
|
| 187 |
+
# The output is typically a list of dicts: [{'generated_text': '...'}]
|
| 188 |
+
generated_code = generated_code_output[0]['generated_text'].replace(problem_statement, "").strip()
|
| 189 |
+
|
| 190 |
+
print("-" * 30 + " GENERATED CODE " + "-" * 30)
|
| 191 |
+
print(f"\n{generated_code}\n")
|
| 192 |
+
print("-" * 76)
|
| 193 |
+
|
| 194 |
+
# Evaluate code
|
| 195 |
+
evaluation_scores = evaluate_code(problem_statement, generated_code)
|
| 196 |
+
|
| 197 |
+
# Append the result
|
| 198 |
+
if evaluation_scores:
|
| 199 |
+
results.append({
|
| 200 |
+
"model_name": model_name,
|
| 201 |
+
"Scores": evaluation_scores
|
| 202 |
+
})
|
| 203 |
+
else:
|
| 204 |
+
print(f"Skipping model {model_name} due to failed evaluation.")
|
| 205 |
+
|
| 206 |
+
# --- Visualization of Evaluation Results ---
|
| 207 |
+
|
| 208 |
+
print("\n" + "=" * 80)
|
| 209 |
+
print("Final Evaluation Results:")
|
| 210 |
+
print("=" * 80)
|
| 211 |
+
|
| 212 |
+
print(results)
|
| 213 |
+
|
| 214 |
+
# Visualize the scores
|
| 215 |
+
if results:
|
| 216 |
+
visualize_scores(results)
|
| 217 |
+
else:
|
| 218 |
+
print("No valid results to visualize.")
|