Spaces:
Runtime error
Runtime error
| import torch | |
| from diffusers import StableVideoDiffusionPipeline | |
| from diffusers.utils import load_image | |
| import spaces | |
| def compile_model(): | |
| # Load the model | |
| model_id = "stabilityai/stable-video-diffusion-img2vid-xt" | |
| pipe = StableVideoDiffusionPipeline.from_pretrained(model_id, torch_dtype=torch.float16, variant="fp16") | |
| pipe.to('cuda') | |
| # AoT compilation | |
| def compile_transformer(): | |
| # Capture example inputs | |
| with spaces.aoti_capture(pipe.unet) as call: | |
| image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png") | |
| pipe(image).frames | |
| # Export and compile | |
| exported = torch.export.export( | |
| pipe.unet, | |
| args=call.args, | |
| kwargs=call.kwargs, | |
| ) | |
| return spaces.aoti_compile(exported) | |
| compiled_unet = compile_transformer() | |
| spaces.aoti_apply(compiled_unet, pipe.unet) | |
| return pipe | |
| def generate_video(prompt: str, pipe): | |
| # For simplicity, use a placeholder image; in real app, generate image from text first | |
| image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/svd/rocket.png") # Placeholder | |
| # Generate video | |
| frames = pipe(image, decode_chunk_size=8).frames[0] | |
| # Save as video (placeholder path) | |
| import imageio | |
| video_path = f"/tmp/generated_video_{hash(prompt)}.mp4" | |
| imageio.mimsave(video_path, frames, fps=7) | |
| return video_path |