Commit
·
dbb9a1a
1
Parent(s):
ead9c37
Update model/retrain.py
Browse filesCross Validation Implementation
- model/retrain.py +529 -153
model/retrain.py
CHANGED
|
@@ -1,3 +1,6 @@
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import pandas as pd
|
| 2 |
import numpy as np
|
| 3 |
import joblib
|
|
@@ -17,7 +20,9 @@ from sklearn.metrics import (
|
|
| 17 |
accuracy_score, precision_score, recall_score, f1_score,
|
| 18 |
roc_auc_score, confusion_matrix, classification_report
|
| 19 |
)
|
| 20 |
-
from sklearn.model_selection import
|
|
|
|
|
|
|
| 21 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 22 |
from sklearn.linear_model import LogisticRegression
|
| 23 |
from sklearn.ensemble import RandomForestClassifier
|
|
@@ -36,13 +41,322 @@ logging.basicConfig(
|
|
| 36 |
)
|
| 37 |
logger = logging.getLogger(__name__)
|
| 38 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 39 |
class RobustModelRetrainer:
|
| 40 |
-
"""Production-ready model retraining with
|
| 41 |
|
| 42 |
def __init__(self):
|
| 43 |
self.setup_paths()
|
| 44 |
self.setup_retraining_config()
|
| 45 |
self.setup_statistical_tests()
|
|
|
|
| 46 |
|
| 47 |
def setup_paths(self):
|
| 48 |
"""Setup all necessary paths"""
|
|
@@ -81,7 +395,7 @@ class RobustModelRetrainer:
|
|
| 81 |
self.min_new_samples = 50
|
| 82 |
self.improvement_threshold = 0.01 # 1% improvement required
|
| 83 |
self.significance_level = 0.05
|
| 84 |
-
self.cv_folds = 5
|
| 85 |
self.test_size = 0.2
|
| 86 |
self.random_state = 42
|
| 87 |
self.max_retries = 3
|
|
@@ -90,9 +404,9 @@ class RobustModelRetrainer:
|
|
| 90 |
def setup_statistical_tests(self):
|
| 91 |
"""Setup statistical test configurations"""
|
| 92 |
self.statistical_tests = {
|
| 93 |
-
'mcnemar': {'alpha': 0.05, 'name': "McNemar's Test"},
|
| 94 |
'paired_ttest': {'alpha': 0.05, 'name': "Paired T-Test"},
|
| 95 |
-
'wilcoxon': {'alpha': 0.05, 'name': "Wilcoxon Signed-Rank Test"}
|
|
|
|
| 96 |
}
|
| 97 |
|
| 98 |
def load_existing_metadata(self) -> Optional[Dict]:
|
|
@@ -246,146 +560,129 @@ class RobustModelRetrainer:
|
|
| 246 |
return pipeline
|
| 247 |
|
| 248 |
def train_candidate_model(self, df: pd.DataFrame) -> Tuple[bool, Optional[Any], Dict]:
|
| 249 |
-
"""Train candidate model with comprehensive evaluation"""
|
| 250 |
try:
|
| 251 |
-
logger.info("Training candidate model...")
|
| 252 |
|
| 253 |
# Prepare data
|
| 254 |
X = df['text'].values
|
| 255 |
y = df['label'].values
|
| 256 |
|
| 257 |
-
# Train-test split
|
| 258 |
-
from sklearn.model_selection import train_test_split
|
| 259 |
-
X_train, X_test, y_train, y_test = train_test_split(
|
| 260 |
-
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
|
| 261 |
-
)
|
| 262 |
-
|
| 263 |
# Create and train pipeline
|
| 264 |
pipeline = self.create_advanced_pipeline()
|
| 265 |
-
pipeline.fit(X_train, y_train)
|
| 266 |
|
| 267 |
-
#
|
| 268 |
-
|
|
|
|
| 269 |
|
| 270 |
-
#
|
| 271 |
-
|
| 272 |
-
joblib.dump(pipeline.named_steps['model'], self.candidate_model_path)
|
| 273 |
-
joblib.dump(pipeline.named_steps['vectorize'], self.candidate_vectorizer_path)
|
| 274 |
|
| 275 |
-
|
| 276 |
-
|
| 277 |
-
|
|
|
|
| 278 |
|
| 279 |
-
|
|
|
|
| 280 |
|
| 281 |
-
|
| 282 |
-
|
| 283 |
-
|
| 284 |
-
return False, None, {'error': error_msg}
|
| 285 |
-
|
| 286 |
-
def evaluate_model(self, model, X_test, y_test, X_train=None, y_train=None) -> Dict:
|
| 287 |
-
"""Comprehensive model evaluation"""
|
| 288 |
-
try:
|
| 289 |
-
# Predictions
|
| 290 |
-
y_pred = model.predict(X_test)
|
| 291 |
-
y_pred_proba = model.predict_proba(X_test)[:, 1]
|
| 292 |
|
| 293 |
-
|
| 294 |
-
metrics = {
|
| 295 |
'accuracy': float(accuracy_score(y_test, y_pred)),
|
| 296 |
'precision': float(precision_score(y_test, y_pred, average='weighted')),
|
| 297 |
'recall': float(recall_score(y_test, y_pred, average='weighted')),
|
| 298 |
'f1': float(f1_score(y_test, y_pred, average='weighted')),
|
| 299 |
-
'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
|
| 300 |
-
'confusion_matrix': confusion_matrix(y_test, y_pred).tolist(),
|
| 301 |
-
'evaluation_timestamp': datetime.now().isoformat()
|
| 302 |
}
|
| 303 |
|
| 304 |
-
#
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
|
| 310 |
-
|
| 311 |
-
)
|
| 312 |
-
metrics['cv_f1_mean'] = float(cv_scores.mean())
|
| 313 |
-
metrics['cv_f1_std'] = float(cv_scores.std())
|
| 314 |
-
except Exception as e:
|
| 315 |
-
logger.warning(f"Cross-validation failed: {e}")
|
| 316 |
|
| 317 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 318 |
|
| 319 |
except Exception as e:
|
| 320 |
-
|
| 321 |
-
|
|
|
|
| 322 |
|
| 323 |
-
def
|
| 324 |
-
"""
|
|
|
|
|
|
|
|
|
|
| 325 |
try:
|
| 326 |
-
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
|
| 330 |
-
candidate_pred = candidate_model.predict(X_test)
|
| 331 |
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
candidate_accuracy = accuracy_score(y_test, candidate_pred)
|
| 335 |
|
| 336 |
-
|
| 337 |
-
|
| 338 |
-
'
|
| 339 |
-
'
|
| 340 |
-
'
|
| 341 |
-
'
|
| 342 |
-
}
|
| 343 |
-
|
| 344 |
-
# McNemar's test for paired predictions
|
| 345 |
-
try:
|
| 346 |
-
# Create contingency table
|
| 347 |
-
prod_correct = (prod_pred == y_test)
|
| 348 |
-
candidate_correct = (candidate_pred == y_test)
|
| 349 |
-
|
| 350 |
-
both_correct = np.sum(prod_correct & candidate_correct)
|
| 351 |
-
prod_only = np.sum(prod_correct & ~candidate_correct)
|
| 352 |
-
candidate_only = np.sum(~prod_correct & candidate_correct)
|
| 353 |
-
both_wrong = np.sum(~prod_correct & ~candidate_correct)
|
| 354 |
-
|
| 355 |
-
# McNemar's test
|
| 356 |
-
if prod_only + candidate_only > 0:
|
| 357 |
-
mcnemar_stat = (abs(prod_only - candidate_only) - 1) ** 2 / (prod_only + candidate_only)
|
| 358 |
-
p_value = 1 - stats.chi2.cdf(mcnemar_stat, 1)
|
| 359 |
-
|
| 360 |
-
comparison_results['statistical_tests']['mcnemar'] = {
|
| 361 |
-
'statistic': float(mcnemar_stat),
|
| 362 |
-
'p_value': float(p_value),
|
| 363 |
-
'significant': p_value < self.significance_level,
|
| 364 |
-
'contingency_table': {
|
| 365 |
-
'both_correct': int(both_correct),
|
| 366 |
-
'prod_only': int(prod_only),
|
| 367 |
-
'candidate_only': int(candidate_only),
|
| 368 |
-
'both_wrong': int(both_wrong)
|
| 369 |
-
}
|
| 370 |
-
}
|
| 371 |
-
|
| 372 |
-
except Exception as e:
|
| 373 |
-
logger.warning(f"McNemar's test failed: {e}")
|
| 374 |
-
|
| 375 |
-
# Practical significance test
|
| 376 |
-
comparison_results['practical_significance'] = {
|
| 377 |
-
'meets_threshold': comparison_results['absolute_improvement'] >= self.improvement_threshold,
|
| 378 |
-
'threshold': self.improvement_threshold,
|
| 379 |
-
'recommendation': 'promote' if (
|
| 380 |
-
comparison_results['absolute_improvement'] >= self.improvement_threshold and
|
| 381 |
-
comparison_results['statistical_tests'].get('mcnemar', {}).get('significant', False)
|
| 382 |
-
) else 'keep_current'
|
| 383 |
}
|
| 384 |
|
| 385 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 386 |
|
| 387 |
except Exception as e:
|
| 388 |
-
logger.error(f"
|
| 389 |
return {'error': str(e)}
|
| 390 |
|
| 391 |
def create_backup(self) -> bool:
|
|
@@ -415,7 +712,7 @@ class RobustModelRetrainer:
|
|
| 415 |
return False
|
| 416 |
|
| 417 |
def promote_candidate_model(self, candidate_model, candidate_metrics: Dict, comparison_results: Dict) -> bool:
|
| 418 |
-
"""Promote candidate model to production"""
|
| 419 |
try:
|
| 420 |
logger.info("Promoting candidate model to production...")
|
| 421 |
|
|
@@ -429,7 +726,7 @@ class RobustModelRetrainer:
|
|
| 429 |
shutil.copy2(self.candidate_vectorizer_path, self.prod_vectorizer_path)
|
| 430 |
shutil.copy2(self.candidate_pipeline_path, self.prod_pipeline_path)
|
| 431 |
|
| 432 |
-
# Update metadata
|
| 433 |
metadata = self.load_existing_metadata() or {}
|
| 434 |
|
| 435 |
# Increment version
|
|
@@ -443,27 +740,78 @@ class RobustModelRetrainer:
|
|
| 443 |
else:
|
| 444 |
new_version = f"v1.{int(datetime.now().timestamp()) % 1000}"
|
| 445 |
|
| 446 |
-
#
|
|
|
|
|
|
|
|
|
|
|
|
|
| 447 |
metadata.update({
|
| 448 |
'model_version': new_version,
|
| 449 |
-
'model_type': '
|
| 450 |
'previous_version': old_version,
|
| 451 |
-
'test_accuracy': candidate_metrics['accuracy'],
|
| 452 |
-
'test_f1': candidate_metrics['f1'],
|
| 453 |
-
'test_precision': candidate_metrics['precision'],
|
| 454 |
-
'test_recall': candidate_metrics['recall'],
|
| 455 |
-
'test_roc_auc': candidate_metrics['roc_auc'],
|
| 456 |
-
'improvement_over_previous': comparison_results['absolute_improvement'],
|
| 457 |
-
'statistical_significance': comparison_results['statistical_tests'].get('mcnemar', {}).get('significant', False),
|
| 458 |
'promotion_timestamp': datetime.now().isoformat(),
|
| 459 |
-
'retrain_trigger': '
|
|
|
|
|
|
|
| 460 |
})
|
| 461 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
# Save updated metadata
|
| 463 |
with open(self.metadata_path, 'w') as f:
|
| 464 |
json.dump(metadata, f, indent=2)
|
| 465 |
|
| 466 |
logger.info(f"Model promoted successfully to {new_version}")
|
|
|
|
| 467 |
return True
|
| 468 |
|
| 469 |
except Exception as e:
|
|
@@ -471,12 +819,13 @@ class RobustModelRetrainer:
|
|
| 471 |
return False
|
| 472 |
|
| 473 |
def log_retraining_session(self, results: Dict):
|
| 474 |
-
"""Log retraining session results"""
|
| 475 |
try:
|
| 476 |
log_entry = {
|
| 477 |
'timestamp': datetime.now().isoformat(),
|
| 478 |
'results': results,
|
| 479 |
-
'session_id': hashlib.md5(str(datetime.now()).encode()).hexdigest()[:8]
|
|
|
|
| 480 |
}
|
| 481 |
|
| 482 |
# Load existing logs
|
|
@@ -499,13 +848,36 @@ class RobustModelRetrainer:
|
|
| 499 |
with open(self.retraining_log_path, 'w') as f:
|
| 500 |
json.dump(logs, f, indent=2)
|
| 501 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 502 |
except Exception as e:
|
| 503 |
logger.error(f"Failed to log retraining session: {str(e)}")
|
| 504 |
|
| 505 |
def retrain_model(self) -> Tuple[bool, str]:
|
| 506 |
-
"""Main retraining function with comprehensive validation"""
|
| 507 |
try:
|
| 508 |
-
logger.info("Starting model retraining
|
| 509 |
|
| 510 |
# Load existing metadata
|
| 511 |
existing_metadata = self.load_existing_metadata()
|
|
@@ -528,22 +900,18 @@ class RobustModelRetrainer:
|
|
| 528 |
if len(df) < self.min_new_samples:
|
| 529 |
return False, f"Insufficient new data: {len(df)} < {self.min_new_samples}"
|
| 530 |
|
| 531 |
-
# Train candidate model
|
| 532 |
candidate_success, candidate_model, candidate_metrics = self.train_candidate_model(df)
|
| 533 |
if not candidate_success:
|
| 534 |
return False, f"Candidate training failed: {candidate_metrics.get('error', 'Unknown error')}"
|
| 535 |
|
| 536 |
-
# Prepare
|
| 537 |
X = df['text'].values
|
| 538 |
y = df['label'].values
|
| 539 |
-
from sklearn.model_selection import train_test_split
|
| 540 |
-
_, X_test, _, y_test = train_test_split(
|
| 541 |
-
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
|
| 542 |
-
)
|
| 543 |
|
| 544 |
-
#
|
| 545 |
-
comparison_results = self.
|
| 546 |
-
prod_model, candidate_model,
|
| 547 |
)
|
| 548 |
|
| 549 |
# Log results
|
|
@@ -551,16 +919,15 @@ class RobustModelRetrainer:
|
|
| 551 |
'candidate_metrics': candidate_metrics,
|
| 552 |
'comparison_results': comparison_results,
|
| 553 |
'data_size': len(df),
|
| 554 |
-
'
|
|
|
|
| 555 |
}
|
| 556 |
|
| 557 |
self.log_retraining_session(session_results)
|
| 558 |
|
| 559 |
-
#
|
| 560 |
-
|
| 561 |
-
|
| 562 |
-
comparison_results.get('statistical_tests', {}).get('mcnemar', {}).get('significant', False)
|
| 563 |
-
)
|
| 564 |
|
| 565 |
if should_promote:
|
| 566 |
# Promote candidate model
|
|
@@ -569,10 +936,16 @@ class RobustModelRetrainer:
|
|
| 569 |
)
|
| 570 |
|
| 571 |
if promotion_success:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
success_msg = (
|
| 573 |
-
f"Model promoted successfully! "
|
| 574 |
-
f"
|
| 575 |
-
f"
|
|
|
|
| 576 |
)
|
| 577 |
logger.info(success_msg)
|
| 578 |
return True, success_msg
|
|
@@ -580,21 +953,24 @@ class RobustModelRetrainer:
|
|
| 580 |
return False, "Model promotion failed"
|
| 581 |
else:
|
| 582 |
# Keep current model
|
|
|
|
|
|
|
|
|
|
| 583 |
keep_msg = (
|
| 584 |
-
f"Keeping current model. "
|
| 585 |
-
f"
|
| 586 |
-
f"
|
| 587 |
)
|
| 588 |
logger.info(keep_msg)
|
| 589 |
return True, keep_msg
|
| 590 |
|
| 591 |
except Exception as e:
|
| 592 |
-
error_msg = f"
|
| 593 |
logger.error(error_msg)
|
| 594 |
return False, error_msg
|
| 595 |
|
| 596 |
def main():
|
| 597 |
-
"""Main execution function"""
|
| 598 |
retrainer = RobustModelRetrainer()
|
| 599 |
success, message = retrainer.retrain_model()
|
| 600 |
|
|
|
|
| 1 |
+
# File: model/retrain.py (MODIFIED)
|
| 2 |
+
# Enhanced version with comprehensive cross-validation for retraining
|
| 3 |
+
|
| 4 |
import pandas as pd
|
| 5 |
import numpy as np
|
| 6 |
import joblib
|
|
|
|
| 20 |
accuracy_score, precision_score, recall_score, f1_score,
|
| 21 |
roc_auc_score, confusion_matrix, classification_report
|
| 22 |
)
|
| 23 |
+
from sklearn.model_selection import (
|
| 24 |
+
cross_val_score, StratifiedKFold, cross_validate, train_test_split
|
| 25 |
+
)
|
| 26 |
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 27 |
from sklearn.linear_model import LogisticRegression
|
| 28 |
from sklearn.ensemble import RandomForestClassifier
|
|
|
|
| 41 |
)
|
| 42 |
logger = logging.getLogger(__name__)
|
| 43 |
|
| 44 |
+
class CVModelComparator:
|
| 45 |
+
"""Advanced model comparison using cross-validation and statistical tests"""
|
| 46 |
+
|
| 47 |
+
def __init__(self, cv_folds: int = 5, random_state: int = 42):
|
| 48 |
+
self.cv_folds = cv_folds
|
| 49 |
+
self.random_state = random_state
|
| 50 |
+
|
| 51 |
+
def create_cv_strategy(self, X, y) -> StratifiedKFold:
|
| 52 |
+
"""Create appropriate CV strategy based on data characteristics"""
|
| 53 |
+
n_samples = len(X)
|
| 54 |
+
min_samples_per_fold = 3
|
| 55 |
+
max_folds = n_samples // min_samples_per_fold
|
| 56 |
+
|
| 57 |
+
unique_classes = np.unique(y)
|
| 58 |
+
min_class_count = min([np.sum(y == cls) for cls in unique_classes])
|
| 59 |
+
max_folds_by_class = min_class_count
|
| 60 |
+
|
| 61 |
+
actual_folds = max(2, min(self.cv_folds, max_folds, max_folds_by_class))
|
| 62 |
+
|
| 63 |
+
logger.info(f"Using {actual_folds} CV folds for model comparison")
|
| 64 |
+
|
| 65 |
+
return StratifiedKFold(
|
| 66 |
+
n_splits=actual_folds,
|
| 67 |
+
shuffle=True,
|
| 68 |
+
random_state=self.random_state
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
def perform_model_cv_evaluation(self, model, X, y, cv_strategy=None) -> Dict:
|
| 72 |
+
"""Perform comprehensive CV evaluation of a model"""
|
| 73 |
+
|
| 74 |
+
if cv_strategy is None:
|
| 75 |
+
cv_strategy = self.create_cv_strategy(X, y)
|
| 76 |
+
|
| 77 |
+
logger.info(f"Performing CV evaluation with {cv_strategy.n_splits} folds...")
|
| 78 |
+
|
| 79 |
+
scoring_metrics = {
|
| 80 |
+
'accuracy': 'accuracy',
|
| 81 |
+
'precision': 'precision_weighted',
|
| 82 |
+
'recall': 'recall_weighted',
|
| 83 |
+
'f1': 'f1_weighted',
|
| 84 |
+
'roc_auc': 'roc_auc'
|
| 85 |
+
}
|
| 86 |
+
|
| 87 |
+
try:
|
| 88 |
+
cv_scores = cross_validate(
|
| 89 |
+
model, X, y,
|
| 90 |
+
cv=cv_strategy,
|
| 91 |
+
scoring=scoring_metrics,
|
| 92 |
+
return_train_score=True,
|
| 93 |
+
n_jobs=1,
|
| 94 |
+
verbose=0
|
| 95 |
+
)
|
| 96 |
+
|
| 97 |
+
cv_results = {
|
| 98 |
+
'n_splits': cv_strategy.n_splits,
|
| 99 |
+
'test_scores': {},
|
| 100 |
+
'train_scores': {},
|
| 101 |
+
'fold_results': []
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
# Process results for each metric
|
| 105 |
+
for metric_name in scoring_metrics.keys():
|
| 106 |
+
test_key = f'test_{metric_name}'
|
| 107 |
+
train_key = f'train_{metric_name}'
|
| 108 |
+
|
| 109 |
+
if test_key in cv_scores:
|
| 110 |
+
test_scores = cv_scores[test_key]
|
| 111 |
+
cv_results['test_scores'][metric_name] = {
|
| 112 |
+
'mean': float(np.mean(test_scores)),
|
| 113 |
+
'std': float(np.std(test_scores)),
|
| 114 |
+
'min': float(np.min(test_scores)),
|
| 115 |
+
'max': float(np.max(test_scores)),
|
| 116 |
+
'scores': test_scores.tolist()
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
if train_key in cv_scores:
|
| 120 |
+
train_scores = cv_scores[train_key]
|
| 121 |
+
cv_results['train_scores'][metric_name] = {
|
| 122 |
+
'mean': float(np.mean(train_scores)),
|
| 123 |
+
'std': float(np.std(train_scores)),
|
| 124 |
+
'scores': train_scores.tolist()
|
| 125 |
+
}
|
| 126 |
+
|
| 127 |
+
# Individual fold results
|
| 128 |
+
for fold_idx in range(cv_strategy.n_splits):
|
| 129 |
+
fold_result = {
|
| 130 |
+
'fold': fold_idx + 1,
|
| 131 |
+
'test_scores': {},
|
| 132 |
+
'train_scores': {}
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
for metric_name in scoring_metrics.keys():
|
| 136 |
+
test_key = f'test_{metric_name}'
|
| 137 |
+
train_key = f'train_{metric_name}'
|
| 138 |
+
|
| 139 |
+
if test_key in cv_scores:
|
| 140 |
+
fold_result['test_scores'][metric_name] = float(cv_scores[test_key][fold_idx])
|
| 141 |
+
if train_key in cv_scores:
|
| 142 |
+
fold_result['train_scores'][metric_name] = float(cv_scores[train_key][fold_idx])
|
| 143 |
+
|
| 144 |
+
cv_results['fold_results'].append(fold_result)
|
| 145 |
+
|
| 146 |
+
# Calculate overfitting and stability scores
|
| 147 |
+
if 'accuracy' in cv_results['test_scores'] and 'accuracy' in cv_results['train_scores']:
|
| 148 |
+
train_mean = cv_results['train_scores']['accuracy']['mean']
|
| 149 |
+
test_mean = cv_results['test_scores']['accuracy']['mean']
|
| 150 |
+
cv_results['overfitting_score'] = float(train_mean - test_mean)
|
| 151 |
+
|
| 152 |
+
test_std = cv_results['test_scores']['accuracy']['std']
|
| 153 |
+
cv_results['stability_score'] = float(1 - (test_std / test_mean)) if test_mean > 0 else 0
|
| 154 |
+
|
| 155 |
+
return cv_results
|
| 156 |
+
|
| 157 |
+
except Exception as e:
|
| 158 |
+
logger.error(f"CV evaluation failed: {e}")
|
| 159 |
+
return {'error': str(e), 'n_splits': cv_strategy.n_splits}
|
| 160 |
+
|
| 161 |
+
def compare_models_with_cv(self, model1, model2, X, y, model1_name="Production", model2_name="Candidate") -> Dict:
|
| 162 |
+
"""Compare two models using cross-validation and statistical tests"""
|
| 163 |
+
|
| 164 |
+
logger.info(f"Comparing {model1_name} vs {model2_name} models using CV...")
|
| 165 |
+
|
| 166 |
+
try:
|
| 167 |
+
cv_strategy = self.create_cv_strategy(X, y)
|
| 168 |
+
|
| 169 |
+
# Evaluate both models with same CV folds
|
| 170 |
+
results1 = self.perform_model_cv_evaluation(model1, X, y, cv_strategy)
|
| 171 |
+
results2 = self.perform_model_cv_evaluation(model2, X, y, cv_strategy)
|
| 172 |
+
|
| 173 |
+
if 'error' in results1 or 'error' in results2:
|
| 174 |
+
return {
|
| 175 |
+
'error': 'One or both models failed CV evaluation',
|
| 176 |
+
'model1_results': results1,
|
| 177 |
+
'model2_results': results2
|
| 178 |
+
}
|
| 179 |
+
|
| 180 |
+
# Statistical comparison
|
| 181 |
+
comparison_results = {
|
| 182 |
+
'model1_name': model1_name,
|
| 183 |
+
'model2_name': model2_name,
|
| 184 |
+
'cv_folds': cv_strategy.n_splits,
|
| 185 |
+
'model1_cv_results': results1,
|
| 186 |
+
'model2_cv_results': results2,
|
| 187 |
+
'statistical_tests': {},
|
| 188 |
+
'metric_comparisons': {}
|
| 189 |
+
}
|
| 190 |
+
|
| 191 |
+
# Compare each metric
|
| 192 |
+
for metric in ['accuracy', 'f1', 'precision', 'recall']:
|
| 193 |
+
if (metric in results1['test_scores'] and
|
| 194 |
+
metric in results2['test_scores']):
|
| 195 |
+
|
| 196 |
+
scores1 = results1['test_scores'][metric]['scores']
|
| 197 |
+
scores2 = results2['test_scores'][metric]['scores']
|
| 198 |
+
|
| 199 |
+
metric_comparison = self._compare_metric_scores(
|
| 200 |
+
scores1, scores2, metric, model1_name, model2_name
|
| 201 |
+
)
|
| 202 |
+
comparison_results['metric_comparisons'][metric] = metric_comparison
|
| 203 |
+
|
| 204 |
+
# Overall recommendation
|
| 205 |
+
f1_comparison = comparison_results['metric_comparisons'].get('f1', {})
|
| 206 |
+
accuracy_comparison = comparison_results['metric_comparisons'].get('accuracy', {})
|
| 207 |
+
|
| 208 |
+
# Decision logic for model promotion
|
| 209 |
+
promote_candidate = False
|
| 210 |
+
promotion_reason = ""
|
| 211 |
+
|
| 212 |
+
if f1_comparison.get('significant_improvement', False):
|
| 213 |
+
promote_candidate = True
|
| 214 |
+
promotion_reason = f"Significant F1 improvement: {f1_comparison.get('improvement', 0):.4f}"
|
| 215 |
+
elif (f1_comparison.get('improvement', 0) > 0.01 and
|
| 216 |
+
accuracy_comparison.get('improvement', 0) > 0.01):
|
| 217 |
+
promote_candidate = True
|
| 218 |
+
promotion_reason = "Practical improvement in both F1 and accuracy"
|
| 219 |
+
elif f1_comparison.get('improvement', 0) > 0.02:
|
| 220 |
+
promote_candidate = True
|
| 221 |
+
promotion_reason = f"Large F1 improvement: {f1_comparison.get('improvement', 0):.4f}"
|
| 222 |
+
else:
|
| 223 |
+
promotion_reason = "No significant improvement detected"
|
| 224 |
+
|
| 225 |
+
comparison_results['promotion_decision'] = {
|
| 226 |
+
'promote_candidate': promote_candidate,
|
| 227 |
+
'reason': promotion_reason,
|
| 228 |
+
'confidence': self._calculate_decision_confidence(comparison_results)
|
| 229 |
+
}
|
| 230 |
+
|
| 231 |
+
logger.info(f"Model comparison completed: {promotion_reason}")
|
| 232 |
+
return comparison_results
|
| 233 |
+
|
| 234 |
+
except Exception as e:
|
| 235 |
+
logger.error(f"Model comparison failed: {e}")
|
| 236 |
+
return {'error': str(e)}
|
| 237 |
+
|
| 238 |
+
def _compare_metric_scores(self, scores1: list, scores2: list, metric: str,
|
| 239 |
+
model1_name: str, model2_name: str) -> Dict:
|
| 240 |
+
"""Compare metric scores between two models using statistical tests"""
|
| 241 |
+
|
| 242 |
+
try:
|
| 243 |
+
# Basic statistics
|
| 244 |
+
mean1, mean2 = np.mean(scores1), np.mean(scores2)
|
| 245 |
+
std1, std2 = np.std(scores1), np.std(scores2)
|
| 246 |
+
improvement = mean2 - mean1
|
| 247 |
+
|
| 248 |
+
comparison = {
|
| 249 |
+
'metric': metric,
|
| 250 |
+
f'{model1_name.lower()}_mean': float(mean1),
|
| 251 |
+
f'{model2_name.lower()}_mean': float(mean2),
|
| 252 |
+
f'{model1_name.lower()}_std': float(std1),
|
| 253 |
+
f'{model2_name.lower()}_std': float(std2),
|
| 254 |
+
'improvement': float(improvement),
|
| 255 |
+
'relative_improvement': float(improvement / mean1 * 100) if mean1 > 0 else 0,
|
| 256 |
+
'tests': {}
|
| 257 |
+
}
|
| 258 |
+
|
| 259 |
+
# Paired t-test
|
| 260 |
+
try:
|
| 261 |
+
t_stat, p_value = stats.ttest_rel(scores2, scores1)
|
| 262 |
+
comparison['tests']['paired_ttest'] = {
|
| 263 |
+
't_statistic': float(t_stat),
|
| 264 |
+
'p_value': float(p_value),
|
| 265 |
+
'significant': p_value < 0.05
|
| 266 |
+
}
|
| 267 |
+
except Exception as e:
|
| 268 |
+
logger.warning(f"Paired t-test failed for {metric}: {e}")
|
| 269 |
+
|
| 270 |
+
# Wilcoxon signed-rank test (non-parametric alternative)
|
| 271 |
+
try:
|
| 272 |
+
w_stat, w_p_value = stats.wilcoxon(scores2, scores1, alternative='greater')
|
| 273 |
+
comparison['tests']['wilcoxon'] = {
|
| 274 |
+
'statistic': float(w_stat),
|
| 275 |
+
'p_value': float(w_p_value),
|
| 276 |
+
'significant': w_p_value < 0.05
|
| 277 |
+
}
|
| 278 |
+
except Exception as e:
|
| 279 |
+
logger.warning(f"Wilcoxon test failed for {metric}: {e}")
|
| 280 |
+
|
| 281 |
+
# Effect size (Cohen's d)
|
| 282 |
+
try:
|
| 283 |
+
pooled_std = np.sqrt(((len(scores1) - 1) * std1**2 + (len(scores2) - 1) * std2**2) /
|
| 284 |
+
(len(scores1) + len(scores2) - 2))
|
| 285 |
+
cohens_d = improvement / pooled_std if pooled_std > 0 else 0
|
| 286 |
+
comparison['effect_size'] = float(cohens_d)
|
| 287 |
+
except Exception:
|
| 288 |
+
comparison['effect_size'] = 0
|
| 289 |
+
|
| 290 |
+
# Practical significance
|
| 291 |
+
practical_threshold = 0.01 # 1% improvement threshold
|
| 292 |
+
comparison['practical_significance'] = abs(improvement) > practical_threshold
|
| 293 |
+
comparison['significant_improvement'] = (
|
| 294 |
+
improvement > practical_threshold and
|
| 295 |
+
comparison['tests'].get('paired_ttest', {}).get('significant', False)
|
| 296 |
+
)
|
| 297 |
+
|
| 298 |
+
return comparison
|
| 299 |
+
|
| 300 |
+
except Exception as e:
|
| 301 |
+
logger.error(f"Metric comparison failed for {metric}: {e}")
|
| 302 |
+
return {'metric': metric, 'error': str(e)}
|
| 303 |
+
|
| 304 |
+
def _calculate_decision_confidence(self, comparison_results: Dict) -> float:
|
| 305 |
+
"""Calculate confidence in the promotion decision"""
|
| 306 |
+
|
| 307 |
+
try:
|
| 308 |
+
confidence_factors = []
|
| 309 |
+
|
| 310 |
+
# Check F1 improvement significance
|
| 311 |
+
f1_comp = comparison_results['metric_comparisons'].get('f1', {})
|
| 312 |
+
if f1_comp.get('significant_improvement', False):
|
| 313 |
+
confidence_factors.append(0.4)
|
| 314 |
+
elif f1_comp.get('improvement', 0) > 0.01:
|
| 315 |
+
confidence_factors.append(0.2)
|
| 316 |
+
|
| 317 |
+
# Check consistency across metrics
|
| 318 |
+
improved_metrics = 0
|
| 319 |
+
total_metrics = 0
|
| 320 |
+
for metric_comp in comparison_results['metric_comparisons'].values():
|
| 321 |
+
if isinstance(metric_comp, dict) and 'improvement' in metric_comp:
|
| 322 |
+
total_metrics += 1
|
| 323 |
+
if metric_comp['improvement'] > 0:
|
| 324 |
+
improved_metrics += 1
|
| 325 |
+
|
| 326 |
+
if total_metrics > 0:
|
| 327 |
+
consistency_score = improved_metrics / total_metrics
|
| 328 |
+
confidence_factors.append(consistency_score * 0.3)
|
| 329 |
+
|
| 330 |
+
# Check effect sizes
|
| 331 |
+
effect_sizes = []
|
| 332 |
+
for metric_comp in comparison_results['metric_comparisons'].values():
|
| 333 |
+
if isinstance(metric_comp, dict) and 'effect_size' in metric_comp:
|
| 334 |
+
effect_sizes.append(abs(metric_comp['effect_size']))
|
| 335 |
+
|
| 336 |
+
if effect_sizes:
|
| 337 |
+
avg_effect_size = np.mean(effect_sizes)
|
| 338 |
+
if avg_effect_size > 0.5: # Large effect
|
| 339 |
+
confidence_factors.append(0.2)
|
| 340 |
+
elif avg_effect_size > 0.2: # Medium effect
|
| 341 |
+
confidence_factors.append(0.1)
|
| 342 |
+
|
| 343 |
+
# Calculate final confidence
|
| 344 |
+
total_confidence = sum(confidence_factors)
|
| 345 |
+
return min(1.0, max(0.0, total_confidence))
|
| 346 |
+
|
| 347 |
+
except Exception as e:
|
| 348 |
+
logger.warning(f"Confidence calculation failed: {e}")
|
| 349 |
+
return 0.5
|
| 350 |
+
|
| 351 |
+
|
| 352 |
class RobustModelRetrainer:
|
| 353 |
+
"""Production-ready model retraining with comprehensive CV and statistical validation"""
|
| 354 |
|
| 355 |
def __init__(self):
|
| 356 |
self.setup_paths()
|
| 357 |
self.setup_retraining_config()
|
| 358 |
self.setup_statistical_tests()
|
| 359 |
+
self.cv_comparator = CVModelComparator()
|
| 360 |
|
| 361 |
def setup_paths(self):
|
| 362 |
"""Setup all necessary paths"""
|
|
|
|
| 395 |
self.min_new_samples = 50
|
| 396 |
self.improvement_threshold = 0.01 # 1% improvement required
|
| 397 |
self.significance_level = 0.05
|
| 398 |
+
self.cv_folds = 5 # Increased for better validation
|
| 399 |
self.test_size = 0.2
|
| 400 |
self.random_state = 42
|
| 401 |
self.max_retries = 3
|
|
|
|
| 404 |
def setup_statistical_tests(self):
|
| 405 |
"""Setup statistical test configurations"""
|
| 406 |
self.statistical_tests = {
|
|
|
|
| 407 |
'paired_ttest': {'alpha': 0.05, 'name': "Paired T-Test"},
|
| 408 |
+
'wilcoxon': {'alpha': 0.05, 'name': "Wilcoxon Signed-Rank Test"},
|
| 409 |
+
'mcnemar': {'alpha': 0.05, 'name': "McNemar's Test"}
|
| 410 |
}
|
| 411 |
|
| 412 |
def load_existing_metadata(self) -> Optional[Dict]:
|
|
|
|
| 560 |
return pipeline
|
| 561 |
|
| 562 |
def train_candidate_model(self, df: pd.DataFrame) -> Tuple[bool, Optional[Any], Dict]:
|
| 563 |
+
"""Train candidate model with comprehensive CV evaluation"""
|
| 564 |
try:
|
| 565 |
+
logger.info("Training candidate model with cross-validation...")
|
| 566 |
|
| 567 |
# Prepare data
|
| 568 |
X = df['text'].values
|
| 569 |
y = df['label'].values
|
| 570 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 571 |
# Create and train pipeline
|
| 572 |
pipeline = self.create_advanced_pipeline()
|
|
|
|
| 573 |
|
| 574 |
+
# Perform cross-validation before final training
|
| 575 |
+
logger.info("Performing cross-validation on candidate model...")
|
| 576 |
+
cv_results = self.cv_comparator.perform_model_cv_evaluation(pipeline, X, y)
|
| 577 |
|
| 578 |
+
# Train on full dataset for final model
|
| 579 |
+
pipeline.fit(X, y)
|
|
|
|
|
|
|
| 580 |
|
| 581 |
+
# Additional holdout evaluation
|
| 582 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 583 |
+
X, y, test_size=self.test_size, stratify=y, random_state=self.random_state
|
| 584 |
+
)
|
| 585 |
|
| 586 |
+
pipeline_holdout = self.create_advanced_pipeline()
|
| 587 |
+
pipeline_holdout.fit(X_train, y_train)
|
| 588 |
|
| 589 |
+
# Evaluate on holdout
|
| 590 |
+
y_pred = pipeline_holdout.predict(X_test)
|
| 591 |
+
y_pred_proba = pipeline_holdout.predict_proba(X_test)[:, 1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 592 |
|
| 593 |
+
holdout_metrics = {
|
|
|
|
| 594 |
'accuracy': float(accuracy_score(y_test, y_pred)),
|
| 595 |
'precision': float(precision_score(y_test, y_pred, average='weighted')),
|
| 596 |
'recall': float(recall_score(y_test, y_pred, average='weighted')),
|
| 597 |
'f1': float(f1_score(y_test, y_pred, average='weighted')),
|
| 598 |
+
'roc_auc': float(roc_auc_score(y_test, y_pred_proba))
|
|
|
|
|
|
|
| 599 |
}
|
| 600 |
|
| 601 |
+
# Combine CV and holdout results
|
| 602 |
+
evaluation_results = {
|
| 603 |
+
'cross_validation': cv_results,
|
| 604 |
+
'holdout_evaluation': holdout_metrics,
|
| 605 |
+
'training_samples': len(X),
|
| 606 |
+
'test_samples': len(X_test)
|
| 607 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 608 |
|
| 609 |
+
# Save candidate model
|
| 610 |
+
joblib.dump(pipeline, self.candidate_pipeline_path)
|
| 611 |
+
if hasattr(pipeline, 'named_steps'):
|
| 612 |
+
joblib.dump(pipeline.named_steps['model'], self.candidate_model_path)
|
| 613 |
+
joblib.dump(pipeline.named_steps['vectorize'], self.candidate_vectorizer_path)
|
| 614 |
+
|
| 615 |
+
# Log results
|
| 616 |
+
if 'test_scores' in cv_results and 'f1' in cv_results['test_scores']:
|
| 617 |
+
cv_f1_mean = cv_results['test_scores']['f1']['mean']
|
| 618 |
+
cv_f1_std = cv_results['test_scores']['f1']['std']
|
| 619 |
+
logger.info(f"Candidate model CV F1: {cv_f1_mean:.4f} (±{cv_f1_std:.4f})")
|
| 620 |
+
|
| 621 |
+
logger.info(f"Candidate model holdout F1: {holdout_metrics['f1']:.4f}")
|
| 622 |
+
logger.info(f"Candidate model training completed")
|
| 623 |
+
|
| 624 |
+
return True, pipeline, evaluation_results
|
| 625 |
|
| 626 |
except Exception as e:
|
| 627 |
+
error_msg = f"Candidate model training failed: {str(e)}"
|
| 628 |
+
logger.error(error_msg)
|
| 629 |
+
return False, None, {'error': error_msg}
|
| 630 |
|
| 631 |
+
def compare_models_with_cv_validation(self, prod_model, candidate_model, X, y) -> Dict:
|
| 632 |
+
"""Compare models using comprehensive cross-validation"""
|
| 633 |
+
|
| 634 |
+
logger.info("Performing comprehensive model comparison with CV...")
|
| 635 |
+
|
| 636 |
try:
|
| 637 |
+
# Use the CV comparator for detailed analysis
|
| 638 |
+
comparison_results = self.cv_comparator.compare_models_with_cv(
|
| 639 |
+
prod_model, candidate_model, X, y, "Production", "Candidate"
|
| 640 |
+
)
|
|
|
|
| 641 |
|
| 642 |
+
if 'error' in comparison_results:
|
| 643 |
+
return comparison_results
|
|
|
|
| 644 |
|
| 645 |
+
# Additional legacy format for backward compatibility
|
| 646 |
+
legacy_comparison = {
|
| 647 |
+
'production_cv_results': comparison_results['model1_cv_results'],
|
| 648 |
+
'candidate_cv_results': comparison_results['model2_cv_results'],
|
| 649 |
+
'statistical_tests': comparison_results['statistical_tests'],
|
| 650 |
+
'promotion_decision': comparison_results['promotion_decision']
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 651 |
}
|
| 652 |
|
| 653 |
+
# Extract key metrics for legacy format
|
| 654 |
+
prod_cv = comparison_results['model1_cv_results']
|
| 655 |
+
cand_cv = comparison_results['model2_cv_results']
|
| 656 |
+
|
| 657 |
+
if 'test_scores' in prod_cv and 'test_scores' in cand_cv:
|
| 658 |
+
if 'accuracy' in prod_cv['test_scores'] and 'accuracy' in cand_cv['test_scores']:
|
| 659 |
+
legacy_comparison.update({
|
| 660 |
+
'production_accuracy': prod_cv['test_scores']['accuracy']['mean'],
|
| 661 |
+
'candidate_accuracy': cand_cv['test_scores']['accuracy']['mean'],
|
| 662 |
+
'absolute_improvement': (cand_cv['test_scores']['accuracy']['mean'] -
|
| 663 |
+
prod_cv['test_scores']['accuracy']['mean']),
|
| 664 |
+
'relative_improvement': ((cand_cv['test_scores']['accuracy']['mean'] -
|
| 665 |
+
prod_cv['test_scores']['accuracy']['mean']) /
|
| 666 |
+
prod_cv['test_scores']['accuracy']['mean'] * 100)
|
| 667 |
+
})
|
| 668 |
+
|
| 669 |
+
# Merge detailed and legacy formats
|
| 670 |
+
final_results = {**comparison_results, **legacy_comparison}
|
| 671 |
+
|
| 672 |
+
# Log summary
|
| 673 |
+
f1_comp = comparison_results.get('metric_comparisons', {}).get('f1', {})
|
| 674 |
+
if f1_comp:
|
| 675 |
+
logger.info(f"F1 improvement: {f1_comp.get('improvement', 0):.4f}")
|
| 676 |
+
logger.info(f"Significant improvement: {f1_comp.get('significant_improvement', False)}")
|
| 677 |
+
|
| 678 |
+
promotion_decision = comparison_results.get('promotion_decision', {})
|
| 679 |
+
logger.info(f"Promotion recommendation: {promotion_decision.get('promote_candidate', False)}")
|
| 680 |
+
logger.info(f"Reason: {promotion_decision.get('reason', 'Unknown')}")
|
| 681 |
+
|
| 682 |
+
return final_results
|
| 683 |
|
| 684 |
except Exception as e:
|
| 685 |
+
logger.error(f"Model comparison failed: {str(e)}")
|
| 686 |
return {'error': str(e)}
|
| 687 |
|
| 688 |
def create_backup(self) -> bool:
|
|
|
|
| 712 |
return False
|
| 713 |
|
| 714 |
def promote_candidate_model(self, candidate_model, candidate_metrics: Dict, comparison_results: Dict) -> bool:
|
| 715 |
+
"""Promote candidate model to production with enhanced metadata"""
|
| 716 |
try:
|
| 717 |
logger.info("Promoting candidate model to production...")
|
| 718 |
|
|
|
|
| 726 |
shutil.copy2(self.candidate_vectorizer_path, self.prod_vectorizer_path)
|
| 727 |
shutil.copy2(self.candidate_pipeline_path, self.prod_pipeline_path)
|
| 728 |
|
| 729 |
+
# Update metadata with comprehensive CV information
|
| 730 |
metadata = self.load_existing_metadata() or {}
|
| 731 |
|
| 732 |
# Increment version
|
|
|
|
| 740 |
else:
|
| 741 |
new_version = f"v1.{int(datetime.now().timestamp()) % 1000}"
|
| 742 |
|
| 743 |
+
# Extract metrics from candidate evaluation
|
| 744 |
+
cv_results = candidate_metrics.get('cross_validation', {})
|
| 745 |
+
holdout_results = candidate_metrics.get('holdout_evaluation', {})
|
| 746 |
+
|
| 747 |
+
# Update metadata with comprehensive information
|
| 748 |
metadata.update({
|
| 749 |
'model_version': new_version,
|
| 750 |
+
'model_type': 'retrained_pipeline_cv',
|
| 751 |
'previous_version': old_version,
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 752 |
'promotion_timestamp': datetime.now().isoformat(),
|
| 753 |
+
'retrain_trigger': 'cv_validated_retrain',
|
| 754 |
+
'training_samples': candidate_metrics.get('training_samples', 'Unknown'),
|
| 755 |
+
'test_samples': candidate_metrics.get('test_samples', 'Unknown')
|
| 756 |
})
|
| 757 |
|
| 758 |
+
# Add holdout evaluation results
|
| 759 |
+
if holdout_results:
|
| 760 |
+
metadata.update({
|
| 761 |
+
'test_accuracy': holdout_results.get('accuracy', 'Unknown'),
|
| 762 |
+
'test_f1': holdout_results.get('f1', 'Unknown'),
|
| 763 |
+
'test_precision': holdout_results.get('precision', 'Unknown'),
|
| 764 |
+
'test_recall': holdout_results.get('recall', 'Unknown'),
|
| 765 |
+
'test_roc_auc': holdout_results.get('roc_auc', 'Unknown')
|
| 766 |
+
})
|
| 767 |
+
|
| 768 |
+
# Add comprehensive CV results
|
| 769 |
+
if cv_results and 'test_scores' in cv_results:
|
| 770 |
+
metadata['cross_validation'] = {
|
| 771 |
+
'n_splits': cv_results.get('n_splits', self.cv_folds),
|
| 772 |
+
'test_scores': cv_results['test_scores'],
|
| 773 |
+
'train_scores': cv_results.get('train_scores', {}),
|
| 774 |
+
'overfitting_score': cv_results.get('overfitting_score', 'Unknown'),
|
| 775 |
+
'stability_score': cv_results.get('stability_score', 'Unknown'),
|
| 776 |
+
'individual_fold_results': cv_results.get('fold_results', [])
|
| 777 |
+
}
|
| 778 |
+
|
| 779 |
+
# Add CV summary statistics
|
| 780 |
+
if 'f1' in cv_results['test_scores']:
|
| 781 |
+
metadata.update({
|
| 782 |
+
'cv_f1_mean': cv_results['test_scores']['f1']['mean'],
|
| 783 |
+
'cv_f1_std': cv_results['test_scores']['f1']['std'],
|
| 784 |
+
'cv_f1_min': cv_results['test_scores']['f1']['min'],
|
| 785 |
+
'cv_f1_max': cv_results['test_scores']['f1']['max']
|
| 786 |
+
})
|
| 787 |
+
|
| 788 |
+
# Add model comparison results
|
| 789 |
+
promotion_decision = comparison_results.get('promotion_decision', {})
|
| 790 |
+
metadata['promotion_validation'] = {
|
| 791 |
+
'decision_confidence': promotion_decision.get('confidence', 'Unknown'),
|
| 792 |
+
'promotion_reason': promotion_decision.get('reason', 'Unknown'),
|
| 793 |
+
'comparison_method': 'cross_validation_statistical_tests'
|
| 794 |
+
}
|
| 795 |
+
|
| 796 |
+
# Add statistical test results
|
| 797 |
+
metric_comparisons = comparison_results.get('metric_comparisons', {})
|
| 798 |
+
if metric_comparisons:
|
| 799 |
+
metadata['statistical_validation'] = {}
|
| 800 |
+
for metric, comparison in metric_comparisons.items():
|
| 801 |
+
if isinstance(comparison, dict):
|
| 802 |
+
metadata['statistical_validation'][metric] = {
|
| 803 |
+
'improvement': comparison.get('improvement', 0),
|
| 804 |
+
'significant_improvement': comparison.get('significant_improvement', False),
|
| 805 |
+
'effect_size': comparison.get('effect_size', 0),
|
| 806 |
+
'tests': comparison.get('tests', {})
|
| 807 |
+
}
|
| 808 |
+
|
| 809 |
# Save updated metadata
|
| 810 |
with open(self.metadata_path, 'w') as f:
|
| 811 |
json.dump(metadata, f, indent=2)
|
| 812 |
|
| 813 |
logger.info(f"Model promoted successfully to {new_version}")
|
| 814 |
+
logger.info(f"Promotion reason: {promotion_decision.get('reason', 'CV validation passed')}")
|
| 815 |
return True
|
| 816 |
|
| 817 |
except Exception as e:
|
|
|
|
| 819 |
return False
|
| 820 |
|
| 821 |
def log_retraining_session(self, results: Dict):
|
| 822 |
+
"""Log comprehensive retraining session results"""
|
| 823 |
try:
|
| 824 |
log_entry = {
|
| 825 |
'timestamp': datetime.now().isoformat(),
|
| 826 |
'results': results,
|
| 827 |
+
'session_id': hashlib.md5(str(datetime.now()).encode()).hexdigest()[:8],
|
| 828 |
+
'retraining_type': 'cv_enhanced'
|
| 829 |
}
|
| 830 |
|
| 831 |
# Load existing logs
|
|
|
|
| 848 |
with open(self.retraining_log_path, 'w') as f:
|
| 849 |
json.dump(logs, f, indent=2)
|
| 850 |
|
| 851 |
+
# Also save detailed comparison results
|
| 852 |
+
if 'comparison_results' in results:
|
| 853 |
+
comparison_logs = []
|
| 854 |
+
if self.comparison_log_path.exists():
|
| 855 |
+
try:
|
| 856 |
+
with open(self.comparison_log_path, 'r') as f:
|
| 857 |
+
comparison_logs = json.load(f)
|
| 858 |
+
except:
|
| 859 |
+
comparison_logs = []
|
| 860 |
+
|
| 861 |
+
comparison_entry = {
|
| 862 |
+
'timestamp': datetime.now().isoformat(),
|
| 863 |
+
'session_id': log_entry['session_id'],
|
| 864 |
+
'comparison_details': results['comparison_results']
|
| 865 |
+
}
|
| 866 |
+
|
| 867 |
+
comparison_logs.append(comparison_entry)
|
| 868 |
+
if len(comparison_logs) > 50:
|
| 869 |
+
comparison_logs = comparison_logs[-50:]
|
| 870 |
+
|
| 871 |
+
with open(self.comparison_log_path, 'w') as f:
|
| 872 |
+
json.dump(comparison_logs, f, indent=2)
|
| 873 |
+
|
| 874 |
except Exception as e:
|
| 875 |
logger.error(f"Failed to log retraining session: {str(e)}")
|
| 876 |
|
| 877 |
def retrain_model(self) -> Tuple[bool, str]:
|
| 878 |
+
"""Main retraining function with comprehensive CV validation"""
|
| 879 |
try:
|
| 880 |
+
logger.info("Starting enhanced model retraining with cross-validation...")
|
| 881 |
|
| 882 |
# Load existing metadata
|
| 883 |
existing_metadata = self.load_existing_metadata()
|
|
|
|
| 900 |
if len(df) < self.min_new_samples:
|
| 901 |
return False, f"Insufficient new data: {len(df)} < {self.min_new_samples}"
|
| 902 |
|
| 903 |
+
# Train candidate model with CV
|
| 904 |
candidate_success, candidate_model, candidate_metrics = self.train_candidate_model(df)
|
| 905 |
if not candidate_success:
|
| 906 |
return False, f"Candidate training failed: {candidate_metrics.get('error', 'Unknown error')}"
|
| 907 |
|
| 908 |
+
# Prepare data for model comparison
|
| 909 |
X = df['text'].values
|
| 910 |
y = df['label'].values
|
|
|
|
|
|
|
|
|
|
|
|
|
| 911 |
|
| 912 |
+
# Comprehensive model comparison with CV
|
| 913 |
+
comparison_results = self.compare_models_with_cv_validation(
|
| 914 |
+
prod_model, candidate_model, X, y
|
| 915 |
)
|
| 916 |
|
| 917 |
# Log results
|
|
|
|
| 919 |
'candidate_metrics': candidate_metrics,
|
| 920 |
'comparison_results': comparison_results,
|
| 921 |
'data_size': len(df),
|
| 922 |
+
'cv_folds': self.cv_folds,
|
| 923 |
+
'retraining_method': 'cv_enhanced'
|
| 924 |
}
|
| 925 |
|
| 926 |
self.log_retraining_session(session_results)
|
| 927 |
|
| 928 |
+
# Decision based on CV comparison
|
| 929 |
+
promotion_decision = comparison_results.get('promotion_decision', {})
|
| 930 |
+
should_promote = promotion_decision.get('promote_candidate', False)
|
|
|
|
|
|
|
| 931 |
|
| 932 |
if should_promote:
|
| 933 |
# Promote candidate model
|
|
|
|
| 936 |
)
|
| 937 |
|
| 938 |
if promotion_success:
|
| 939 |
+
# Extract improvement information
|
| 940 |
+
f1_comp = comparison_results.get('metric_comparisons', {}).get('f1', {})
|
| 941 |
+
improvement = f1_comp.get('improvement', 0)
|
| 942 |
+
confidence = promotion_decision.get('confidence', 0)
|
| 943 |
+
|
| 944 |
success_msg = (
|
| 945 |
+
f"Model promoted successfully with CV validation! "
|
| 946 |
+
f"F1 improvement: {improvement:.4f}, "
|
| 947 |
+
f"Confidence: {confidence:.2f}, "
|
| 948 |
+
f"Reason: {promotion_decision.get('reason', 'CV validation passed')}"
|
| 949 |
)
|
| 950 |
logger.info(success_msg)
|
| 951 |
return True, success_msg
|
|
|
|
| 953 |
return False, "Model promotion failed"
|
| 954 |
else:
|
| 955 |
# Keep current model
|
| 956 |
+
reason = promotion_decision.get('reason', 'No significant improvement detected')
|
| 957 |
+
confidence = promotion_decision.get('confidence', 0)
|
| 958 |
+
|
| 959 |
keep_msg = (
|
| 960 |
+
f"Keeping current model based on CV analysis. "
|
| 961 |
+
f"Reason: {reason}, "
|
| 962 |
+
f"Confidence: {confidence:.2f}"
|
| 963 |
)
|
| 964 |
logger.info(keep_msg)
|
| 965 |
return True, keep_msg
|
| 966 |
|
| 967 |
except Exception as e:
|
| 968 |
+
error_msg = f"Enhanced model retraining failed: {str(e)}"
|
| 969 |
logger.error(error_msg)
|
| 970 |
return False, error_msg
|
| 971 |
|
| 972 |
def main():
|
| 973 |
+
"""Main execution function with CV enhancements"""
|
| 974 |
retrainer = RobustModelRetrainer()
|
| 975 |
success, message = retrainer.retrain_model()
|
| 976 |
|