Commit
Β·
cc910a7
1
Parent(s):
57fc42f
Create initialize_system.py
Browse files- initialize_system.py +218 -0
initialize_system.py
ADDED
|
@@ -0,0 +1,218 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import sys
|
| 3 |
+
import shutil
|
| 4 |
+
import pandas as pd
|
| 5 |
+
import json
|
| 6 |
+
from pathlib import Path
|
| 7 |
+
from datetime import datetime
|
| 8 |
+
|
| 9 |
+
def log_step(message):
|
| 10 |
+
"""Log initialization steps"""
|
| 11 |
+
print(f"[{datetime.now().strftime('%H:%M:%S')}] {message}")
|
| 12 |
+
|
| 13 |
+
def create_directories():
|
| 14 |
+
"""Create necessary directories"""
|
| 15 |
+
log_step("Creating directory structure...")
|
| 16 |
+
|
| 17 |
+
directories = [
|
| 18 |
+
"/tmp/data",
|
| 19 |
+
"/tmp/model",
|
| 20 |
+
"/tmp/logs"
|
| 21 |
+
]
|
| 22 |
+
|
| 23 |
+
for dir_path in directories:
|
| 24 |
+
Path(dir_path).mkdir(parents=True, exist_ok=True)
|
| 25 |
+
log_step(f"β
Created {dir_path}")
|
| 26 |
+
|
| 27 |
+
def copy_original_datasets():
|
| 28 |
+
"""Copy original datasets from /app to /tmp"""
|
| 29 |
+
log_step("Copying original datasets...")
|
| 30 |
+
|
| 31 |
+
source_files = [
|
| 32 |
+
("/app/data/kaggle/Fake.csv", "/tmp/data/kaggle/Fake.csv"),
|
| 33 |
+
("/app/data/kaggle/True.csv", "/tmp/data/kaggle/True.csv"),
|
| 34 |
+
("/app/data/combined_dataset.csv", "/tmp/data/combined_dataset.csv")
|
| 35 |
+
]
|
| 36 |
+
|
| 37 |
+
copied_count = 0
|
| 38 |
+
for source, dest in source_files:
|
| 39 |
+
if Path(source).exists():
|
| 40 |
+
Path(dest).parent.mkdir(parents=True, exist_ok=True)
|
| 41 |
+
shutil.copy(source, dest)
|
| 42 |
+
log_step(f"β
Copied {source} to {dest}")
|
| 43 |
+
copied_count += 1
|
| 44 |
+
else:
|
| 45 |
+
log_step(f"β οΈ Source file not found: {source}")
|
| 46 |
+
|
| 47 |
+
return copied_count > 0
|
| 48 |
+
|
| 49 |
+
def create_minimal_dataset():
|
| 50 |
+
"""Create a minimal dataset if original doesn't exist"""
|
| 51 |
+
log_step("Creating minimal dataset...")
|
| 52 |
+
|
| 53 |
+
combined_path = Path("/tmp/data/combined_dataset.csv")
|
| 54 |
+
|
| 55 |
+
if combined_path.exists():
|
| 56 |
+
log_step("β
Combined dataset already exists")
|
| 57 |
+
return True
|
| 58 |
+
|
| 59 |
+
# Create minimal training data
|
| 60 |
+
minimal_data = pd.DataFrame({
|
| 61 |
+
'text': [
|
| 62 |
+
'Scientists discover new species in Amazon rainforest',
|
| 63 |
+
'SHOCKING: Aliens spotted in Area 51, government confirms existence',
|
| 64 |
+
'Local authorities report increase in renewable energy adoption',
|
| 65 |
+
'You won\'t believe what happens when you eat this miracle fruit',
|
| 66 |
+
'Economic indicators show steady growth in manufacturing sector',
|
| 67 |
+
'EXCLUSIVE: Celebrity caught in secret alien communication scandal',
|
| 68 |
+
'Research shows positive effects of meditation on mental health',
|
| 69 |
+
'Government hiding truth about flat earth, conspiracy theorists claim',
|
| 70 |
+
'New study reveals benefits of regular exercise for elderly',
|
| 71 |
+
'BREAKING: Time travel confirmed by underground scientists'
|
| 72 |
+
],
|
| 73 |
+
'label': [0, 1, 0, 1, 0, 1, 0, 1, 0, 1] # 0=Real, 1=Fake
|
| 74 |
+
})
|
| 75 |
+
|
| 76 |
+
minimal_data.to_csv(combined_path, index=False)
|
| 77 |
+
log_step(f"β
Created minimal dataset with {len(minimal_data)} samples")
|
| 78 |
+
return True
|
| 79 |
+
|
| 80 |
+
def run_initial_training():
|
| 81 |
+
"""Run basic model training"""
|
| 82 |
+
log_step("Starting initial model training...")
|
| 83 |
+
|
| 84 |
+
try:
|
| 85 |
+
# Check if model already exists
|
| 86 |
+
model_path = Path("/tmp/model.pkl")
|
| 87 |
+
vectorizer_path = Path("/tmp/vectorizer.pkl")
|
| 88 |
+
|
| 89 |
+
if model_path.exists() and vectorizer_path.exists():
|
| 90 |
+
log_step("β
Model files already exist")
|
| 91 |
+
return True
|
| 92 |
+
|
| 93 |
+
# Import required libraries
|
| 94 |
+
from sklearn.feature_extraction.text import TfidfVectorizer
|
| 95 |
+
from sklearn.linear_model import LogisticRegression
|
| 96 |
+
from sklearn.model_selection import train_test_split
|
| 97 |
+
from sklearn.metrics import accuracy_score
|
| 98 |
+
import joblib
|
| 99 |
+
|
| 100 |
+
# Load dataset
|
| 101 |
+
dataset_path = Path("/tmp/data/combined_dataset.csv")
|
| 102 |
+
if not dataset_path.exists():
|
| 103 |
+
log_step("β No dataset available for training")
|
| 104 |
+
return False
|
| 105 |
+
|
| 106 |
+
df = pd.read_csv(dataset_path)
|
| 107 |
+
log_step(f"Loaded dataset with {len(df)} samples")
|
| 108 |
+
|
| 109 |
+
# Prepare data
|
| 110 |
+
X = df['text'].values
|
| 111 |
+
y = df['label'].values
|
| 112 |
+
|
| 113 |
+
# Train-test split
|
| 114 |
+
X_train, X_test, y_train, y_test = train_test_split(
|
| 115 |
+
X, y, test_size=0.2, random_state=42, stratify=y
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
# Vectorization
|
| 119 |
+
vectorizer = TfidfVectorizer(
|
| 120 |
+
max_features=5000,
|
| 121 |
+
stop_words='english',
|
| 122 |
+
ngram_range=(1, 2)
|
| 123 |
+
)
|
| 124 |
+
X_train_vec = vectorizer.fit_transform(X_train)
|
| 125 |
+
X_test_vec = vectorizer.transform(X_test)
|
| 126 |
+
|
| 127 |
+
# Train model
|
| 128 |
+
model = LogisticRegression(max_iter=1000, random_state=42)
|
| 129 |
+
model.fit(X_train_vec, y_train)
|
| 130 |
+
|
| 131 |
+
# Evaluate
|
| 132 |
+
y_pred = model.predict(X_test_vec)
|
| 133 |
+
accuracy = accuracy_score(y_test, y_pred)
|
| 134 |
+
|
| 135 |
+
# Save model
|
| 136 |
+
joblib.dump(model, "/tmp/model.pkl")
|
| 137 |
+
joblib.dump(vectorizer, "/tmp/vectorizer.pkl")
|
| 138 |
+
|
| 139 |
+
# Save metadata
|
| 140 |
+
metadata = {
|
| 141 |
+
"model_version": "v1.0_init",
|
| 142 |
+
"test_accuracy": float(accuracy),
|
| 143 |
+
"train_size": len(X_train),
|
| 144 |
+
"test_size": len(X_test),
|
| 145 |
+
"timestamp": datetime.now().isoformat(),
|
| 146 |
+
"training_method": "initialization"
|
| 147 |
+
}
|
| 148 |
+
|
| 149 |
+
with open("/tmp/metadata.json", 'w') as f:
|
| 150 |
+
json.dump(metadata, f, indent=2)
|
| 151 |
+
|
| 152 |
+
log_step(f"β
Training completed successfully, accuracy: {accuracy:.4f}")
|
| 153 |
+
return True
|
| 154 |
+
|
| 155 |
+
except Exception as e:
|
| 156 |
+
log_step(f"β Training failed: {str(e)}")
|
| 157 |
+
return False
|
| 158 |
+
|
| 159 |
+
def create_initial_logs():
|
| 160 |
+
"""Create initial log files"""
|
| 161 |
+
log_step("Creating initial log files...")
|
| 162 |
+
|
| 163 |
+
try:
|
| 164 |
+
# Activity log
|
| 165 |
+
activity_log = [{
|
| 166 |
+
"timestamp": datetime.now().strftime("%Y-%m-%d %I:%M %p"),
|
| 167 |
+
"event": "System initialized successfully"
|
| 168 |
+
}]
|
| 169 |
+
|
| 170 |
+
with open("/tmp/activity_log.json", 'w') as f:
|
| 171 |
+
json.dump(activity_log, f, indent=2)
|
| 172 |
+
|
| 173 |
+
# Create empty monitoring logs
|
| 174 |
+
with open("/tmp/logs/monitoring_log.json", 'w') as f:
|
| 175 |
+
json.dump([], f)
|
| 176 |
+
|
| 177 |
+
log_step("β
Initial log files created")
|
| 178 |
+
return True
|
| 179 |
+
|
| 180 |
+
except Exception as e:
|
| 181 |
+
log_step(f"β Log creation failed: {str(e)}")
|
| 182 |
+
return False
|
| 183 |
+
|
| 184 |
+
def main():
|
| 185 |
+
"""Main initialization function"""
|
| 186 |
+
log_step("π Starting system initialization...")
|
| 187 |
+
|
| 188 |
+
steps = [
|
| 189 |
+
("Directory Creation", create_directories),
|
| 190 |
+
("Dataset Copy", copy_original_datasets),
|
| 191 |
+
("Minimal Dataset", create_minimal_dataset),
|
| 192 |
+
("Model Training", run_initial_training),
|
| 193 |
+
("Log Creation", create_initial_logs)
|
| 194 |
+
]
|
| 195 |
+
|
| 196 |
+
failed_steps = []
|
| 197 |
+
|
| 198 |
+
for step_name, step_function in steps:
|
| 199 |
+
try:
|
| 200 |
+
if step_function():
|
| 201 |
+
log_step(f"β
{step_name} completed")
|
| 202 |
+
else:
|
| 203 |
+
log_step(f"β {step_name} failed")
|
| 204 |
+
failed_steps.append(step_name)
|
| 205 |
+
except Exception as e:
|
| 206 |
+
log_step(f"β {step_name} failed: {str(e)}")
|
| 207 |
+
failed_steps.append(step_name)
|
| 208 |
+
|
| 209 |
+
if failed_steps:
|
| 210 |
+
log_step(f"β οΈ Initialization completed with {len(failed_steps)} failed steps")
|
| 211 |
+
log_step(f"Failed: {', '.join(failed_steps)}")
|
| 212 |
+
else:
|
| 213 |
+
log_step("π System initialization completed successfully!")
|
| 214 |
+
|
| 215 |
+
log_step("System ready for use!")
|
| 216 |
+
|
| 217 |
+
if __name__ == "__main__":
|
| 218 |
+
main()
|