Update initialize_system.py
Browse files- initialize_system.py +65 -5
initialize_system.py
CHANGED
|
@@ -1,10 +1,11 @@
|
|
| 1 |
import os
|
| 2 |
import sys
|
|
|
|
| 3 |
import shutil
|
| 4 |
import pandas as pd
|
| 5 |
-
import json
|
| 6 |
from pathlib import Path
|
| 7 |
from datetime import datetime
|
|
|
|
| 8 |
|
| 9 |
# Import the new path manager
|
| 10 |
try:
|
|
@@ -274,14 +275,73 @@ def run_initial_training():
|
|
| 274 |
))
|
| 275 |
])
|
| 276 |
|
| 277 |
-
# Train model
|
| 278 |
-
log_step("Training model...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
pipeline.fit(X_train, y_train)
|
| 280 |
-
|
| 281 |
-
# Evaluate
|
| 282 |
y_pred = pipeline.predict(X_test)
|
| 283 |
accuracy = accuracy_score(y_test, y_pred)
|
| 284 |
f1 = f1_score(y_test, y_pred, average='weighted')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 285 |
|
| 286 |
# Ensure model directory exists
|
| 287 |
model_path.parent.mkdir(parents=True, exist_ok=True)
|
|
|
|
| 1 |
import os
|
| 2 |
import sys
|
| 3 |
+
import json
|
| 4 |
import shutil
|
| 5 |
import pandas as pd
|
|
|
|
| 6 |
from pathlib import Path
|
| 7 |
from datetime import datetime
|
| 8 |
+
from sklearn.model_selection import cross_validate
|
| 9 |
|
| 10 |
# Import the new path manager
|
| 11 |
try:
|
|
|
|
| 275 |
))
|
| 276 |
])
|
| 277 |
|
| 278 |
+
# Train model with cross-validation
|
| 279 |
+
log_step("Training model with cross-validation...")
|
| 280 |
+
|
| 281 |
+
# Perform cross-validation before final training
|
| 282 |
+
cv_results = cross_validate(
|
| 283 |
+
pipeline, X_train, y_train,
|
| 284 |
+
cv=3,
|
| 285 |
+
scoring=['accuracy', 'f1_weighted', 'precision_weighted', 'recall_weighted'],
|
| 286 |
+
return_train_score=True
|
| 287 |
+
)
|
| 288 |
+
|
| 289 |
+
# Train final model on all training data
|
| 290 |
pipeline.fit(X_train, y_train)
|
| 291 |
+
|
| 292 |
+
# Evaluate on test set
|
| 293 |
y_pred = pipeline.predict(X_test)
|
| 294 |
accuracy = accuracy_score(y_test, y_pred)
|
| 295 |
f1 = f1_score(y_test, y_pred, average='weighted')
|
| 296 |
+
|
| 297 |
+
# Save CV results for API access
|
| 298 |
+
cv_data = {
|
| 299 |
+
"methodology": {
|
| 300 |
+
"n_splits": 3,
|
| 301 |
+
"cv_type": "StratifiedKFold",
|
| 302 |
+
"random_state": 42
|
| 303 |
+
},
|
| 304 |
+
"test_scores": {
|
| 305 |
+
"accuracy": {
|
| 306 |
+
"mean": float(cv_results['test_accuracy'].mean()),
|
| 307 |
+
"std": float(cv_results['test_accuracy'].std()),
|
| 308 |
+
"scores": cv_results['test_accuracy'].tolist()
|
| 309 |
+
},
|
| 310 |
+
"f1": {
|
| 311 |
+
"mean": float(cv_results['test_f1_weighted'].mean()),
|
| 312 |
+
"std": float(cv_results['test_f1_weighted'].std()),
|
| 313 |
+
"scores": cv_results['test_f1_weighted'].tolist()
|
| 314 |
+
}
|
| 315 |
+
},
|
| 316 |
+
"train_scores": {
|
| 317 |
+
"accuracy": {
|
| 318 |
+
"mean": float(cv_results['train_accuracy'].mean()),
|
| 319 |
+
"std": float(cv_results['train_accuracy'].std()),
|
| 320 |
+
"scores": cv_results['train_accuracy'].tolist()
|
| 321 |
+
},
|
| 322 |
+
"f1": {
|
| 323 |
+
"mean": float(cv_results['train_f1_weighted'].mean()),
|
| 324 |
+
"std": float(cv_results['train_f1_weighted'].std()),
|
| 325 |
+
"scores": cv_results['train_f1_weighted'].tolist()
|
| 326 |
+
}
|
| 327 |
+
}
|
| 328 |
+
}
|
| 329 |
+
|
| 330 |
+
# Calculate quality indicators
|
| 331 |
+
train_acc_mean = cv_data['train_scores']['accuracy']['mean']
|
| 332 |
+
test_acc_mean = cv_data['test_scores']['accuracy']['mean']
|
| 333 |
+
test_acc_std = cv_data['test_scores']['accuracy']['std']
|
| 334 |
+
|
| 335 |
+
cv_data['performance_indicators'] = {
|
| 336 |
+
'overfitting_score': float(train_acc_mean - test_acc_mean),
|
| 337 |
+
'stability_score': float(1 - (test_acc_std / test_acc_mean)) if test_acc_mean > 0 else 0
|
| 338 |
+
}
|
| 339 |
+
|
| 340 |
+
# Save CV results to file
|
| 341 |
+
cv_results_path = path_manager.get_logs_path("cv_results.json")
|
| 342 |
+
with open(cv_results_path, 'w') as f:
|
| 343 |
+
json.dump(cv_data, f, indent=2)
|
| 344 |
+
log_step(f"Saved CV results to: {cv_results_path}")
|
| 345 |
|
| 346 |
# Ensure model directory exists
|
| 347 |
model_path.parent.mkdir(parents=True, exist_ok=True)
|