Commit
·
c474963
1
Parent(s):
63682de
Update app/fastapi_server.py
Browse filesAdding LightGBM for Ensemble Model
- app/fastapi_server.py +396 -1205
app/fastapi_server.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import json
|
| 2 |
import time
|
| 3 |
import joblib
|
|
@@ -24,6 +26,13 @@ from fastapi.middleware.trustedhost import TrustedHostMiddleware
|
|
| 24 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 25 |
from fastapi import FastAPI, HTTPException, Depends, Request, BackgroundTasks, status
|
| 26 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
from data.data_validator import (
|
| 28 |
DataValidationPipeline, validate_text, validate_articles_list,
|
| 29 |
get_validation_stats, generate_quality_report
|
|
@@ -39,12 +48,10 @@ from deployment.traffic_router import TrafficRouter
|
|
| 39 |
from deployment.model_registry import ModelRegistry
|
| 40 |
from deployment.blue_green_manager import BlueGreenDeploymentManager
|
| 41 |
|
| 42 |
-
|
| 43 |
-
# Import the new path manager
|
| 44 |
try:
|
| 45 |
from path_config import path_manager
|
| 46 |
except ImportError:
|
| 47 |
-
# Fallback for development environments
|
| 48 |
import sys
|
| 49 |
import os
|
| 50 |
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
|
@@ -53,26 +60,21 @@ except ImportError:
|
|
| 53 |
# Configure logging with fallback for permission issues
|
| 54 |
def setup_logging():
|
| 55 |
"""Setup logging with fallback for environments with restricted file access"""
|
| 56 |
-
handlers = [logging.StreamHandler()]
|
| 57 |
|
| 58 |
try:
|
| 59 |
-
# Try to create log file in the logs directory
|
| 60 |
log_file_path = path_manager.get_logs_path('fastapi_server.log')
|
| 61 |
log_file_path.parent.mkdir(parents=True, exist_ok=True)
|
| 62 |
|
| 63 |
-
# Test if we can write to the file
|
| 64 |
test_handler = logging.FileHandler(log_file_path)
|
| 65 |
test_handler.close()
|
| 66 |
|
| 67 |
-
# If successful, add file handler
|
| 68 |
handlers.append(logging.FileHandler(log_file_path))
|
| 69 |
-
print(f"Logging to file: {log_file_path}")
|
| 70 |
|
| 71 |
except (PermissionError, OSError) as e:
|
| 72 |
-
# If file logging fails, just use console logging
|
| 73 |
print(f"Cannot create log file, using console only: {e}")
|
| 74 |
|
| 75 |
-
# Try alternative locations for file logging
|
| 76 |
try:
|
| 77 |
import tempfile
|
| 78 |
temp_log = tempfile.NamedTemporaryFile(mode='w', suffix='.log', delete=False, prefix='fastapi_')
|
|
@@ -84,7 +86,7 @@ def setup_logging():
|
|
| 84 |
|
| 85 |
return handlers
|
| 86 |
|
| 87 |
-
# Setup logging
|
| 88 |
logging.basicConfig(
|
| 89 |
level=logging.INFO,
|
| 90 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
@@ -92,7 +94,7 @@ logging.basicConfig(
|
|
| 92 |
)
|
| 93 |
logger = logging.getLogger(__name__)
|
| 94 |
|
| 95 |
-
#
|
| 96 |
try:
|
| 97 |
path_manager.log_environment_info()
|
| 98 |
except Exception as e:
|
|
@@ -105,49 +107,86 @@ security = HTTPBearer(auto_error=False)
|
|
| 105 |
rate_limit_storage = defaultdict(list)
|
| 106 |
|
| 107 |
|
| 108 |
-
class
|
| 109 |
-
"""
|
| 110 |
|
| 111 |
def __init__(self):
|
| 112 |
self.model = None
|
| 113 |
self.vectorizer = None
|
| 114 |
self.pipeline = None
|
|
|
|
| 115 |
self.model_metadata = {}
|
|
|
|
| 116 |
self.last_health_check = None
|
| 117 |
self.health_status = "unknown"
|
|
|
|
|
|
|
| 118 |
self.load_model()
|
| 119 |
|
| 120 |
def load_model(self):
|
| 121 |
-
"""Load model with comprehensive error handling and
|
| 122 |
try:
|
| 123 |
-
logger.info("Loading ML model...")
|
| 124 |
|
| 125 |
# Initialize all to None first
|
| 126 |
self.model = None
|
| 127 |
self.vectorizer = None
|
| 128 |
self.pipeline = None
|
|
|
|
|
|
|
| 129 |
|
| 130 |
-
#
|
| 131 |
-
|
| 132 |
-
|
| 133 |
|
| 134 |
-
if
|
| 135 |
try:
|
| 136 |
-
self.
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
except Exception as e:
|
| 145 |
-
logger.warning(f"Failed to load
|
| 146 |
-
self.
|
| 147 |
-
|
| 148 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 149 |
|
| 150 |
-
# If pipeline loading failed
|
| 151 |
if self.pipeline is None:
|
| 152 |
model_path = path_manager.get_model_file_path()
|
| 153 |
vectorizer_path = path_manager.get_vectorizer_path()
|
|
@@ -159,35 +198,52 @@ class ModelManager:
|
|
| 159 |
try:
|
| 160 |
self.model = joblib.load(model_path)
|
| 161 |
self.vectorizer = joblib.load(vectorizer_path)
|
|
|
|
| 162 |
logger.info("Loaded model components successfully")
|
| 163 |
except Exception as e:
|
| 164 |
logger.error(f"Failed to load individual components: {e}")
|
| 165 |
raise e
|
| 166 |
else:
|
| 167 |
-
raise FileNotFoundError(f"No model files found
|
| 168 |
-
|
| 169 |
-
# Verify we have what we need for predictions
|
| 170 |
-
if self.pipeline is None and (self.model is None or self.vectorizer is None):
|
| 171 |
-
raise ValueError("Neither complete pipeline nor individual model components are available")
|
| 172 |
|
| 173 |
# Load metadata
|
| 174 |
metadata_path = path_manager.get_metadata_path()
|
| 175 |
if metadata_path.exists():
|
| 176 |
with open(metadata_path, 'r') as f:
|
| 177 |
self.model_metadata = json.load(f)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 178 |
logger.info(f"Loaded model metadata: {self.model_metadata.get('model_version', 'Unknown')}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 179 |
else:
|
| 180 |
logger.warning(f"Metadata file not found at: {metadata_path}")
|
| 181 |
self.model_metadata = {"model_version": "unknown"}
|
| 182 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 183 |
self.health_status = "healthy"
|
| 184 |
self.last_health_check = datetime.now()
|
| 185 |
|
| 186 |
# Log what was successfully loaded
|
| 187 |
logger.info(f"Model loading summary:")
|
| 188 |
logger.info(f" Pipeline available: {self.pipeline is not None}")
|
| 189 |
-
logger.info(f"
|
| 190 |
logger.info(f" Vectorizer available: {self.vectorizer is not None}")
|
|
|
|
|
|
|
|
|
|
| 191 |
|
| 192 |
except Exception as e:
|
| 193 |
logger.error(f"Failed to load model: {e}")
|
|
@@ -196,15 +252,21 @@ class ModelManager:
|
|
| 196 |
self.model = None
|
| 197 |
self.vectorizer = None
|
| 198 |
self.pipeline = None
|
|
|
|
| 199 |
|
| 200 |
def predict(self, text: str) -> tuple[str, float]:
|
| 201 |
-
"""Make prediction with
|
| 202 |
try:
|
| 203 |
if self.pipeline:
|
| 204 |
-
# Use pipeline for prediction
|
| 205 |
prediction = self.pipeline.predict([text])[0]
|
| 206 |
probabilities = self.pipeline.predict_proba([text])[0]
|
| 207 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
elif self.model and self.vectorizer:
|
| 209 |
# Use individual components
|
| 210 |
X = self.vectorizer.transform([text])
|
|
@@ -231,7 +293,7 @@ class ModelManager:
|
|
| 231 |
)
|
| 232 |
|
| 233 |
def health_check(self) -> Dict[str, Any]:
|
| 234 |
-
"""Perform health check"""
|
| 235 |
try:
|
| 236 |
# Test prediction with sample text
|
| 237 |
test_text = "This is a test article for health check purposes."
|
|
@@ -240,26 +302,44 @@ class ModelManager:
|
|
| 240 |
self.health_status = "healthy"
|
| 241 |
self.last_health_check = datetime.now()
|
| 242 |
|
| 243 |
-
|
| 244 |
"status": "healthy",
|
| 245 |
"last_check": self.last_health_check.isoformat(),
|
| 246 |
"model_available": self.model is not None,
|
| 247 |
"vectorizer_available": self.vectorizer is not None,
|
| 248 |
"pipeline_available": self.pipeline is not None,
|
|
|
|
|
|
|
|
|
|
| 249 |
"test_prediction": {"label": label, "confidence": confidence},
|
| 250 |
"environment": path_manager.environment,
|
| 251 |
-
"
|
| 252 |
-
"
|
| 253 |
-
|
| 254 |
-
|
|
|
|
|
|
|
|
|
|
| 255 |
"file_exists": {
|
|
|
|
|
|
|
| 256 |
"model": path_manager.get_model_file_path().exists(),
|
| 257 |
"vectorizer": path_manager.get_vectorizer_path().exists(),
|
| 258 |
-
"
|
| 259 |
-
"
|
| 260 |
}
|
| 261 |
}
|
| 262 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
except Exception as e:
|
| 264 |
self.health_status = "unhealthy"
|
| 265 |
self.last_health_check = datetime.now()
|
|
@@ -271,21 +351,15 @@ class ModelManager:
|
|
| 271 |
"model_available": self.model is not None,
|
| 272 |
"vectorizer_available": self.vectorizer is not None,
|
| 273 |
"pipeline_available": self.pipeline is not None,
|
|
|
|
|
|
|
|
|
|
| 274 |
"environment": path_manager.environment,
|
| 275 |
-
"
|
| 276 |
-
"vectorizer_path": str(path_manager.get_vectorizer_path()),
|
| 277 |
-
"pipeline_path": str(path_manager.get_pipeline_path()),
|
| 278 |
-
"data_path": str(path_manager.get_data_path()),
|
| 279 |
-
"file_exists": {
|
| 280 |
-
"model": path_manager.get_model_file_path().exists(),
|
| 281 |
-
"vectorizer": path_manager.get_vectorizer_path().exists(),
|
| 282 |
-
"pipeline": path_manager.get_pipeline_path().exists(),
|
| 283 |
-
"metadata": path_manager.get_metadata_path().exists()
|
| 284 |
-
}
|
| 285 |
}
|
| 286 |
|
| 287 |
|
| 288 |
-
# Background task functions
|
| 289 |
async def log_prediction(text: str, prediction: str, confidence: float, client_ip: str, processing_time: float):
|
| 290 |
"""Log prediction details with error handling for file access"""
|
| 291 |
try:
|
|
@@ -296,7 +370,9 @@ async def log_prediction(text: str, prediction: str, confidence: float, client_i
|
|
| 296 |
"prediction": prediction,
|
| 297 |
"confidence": confidence,
|
| 298 |
"processing_time": processing_time,
|
| 299 |
-
"text_hash": hashlib.md5(text.encode()).hexdigest()
|
|
|
|
|
|
|
| 300 |
}
|
| 301 |
|
| 302 |
# Try to save to log file
|
|
@@ -325,7 +401,6 @@ async def log_prediction(text: str, prediction: str, confidence: float, client_i
|
|
| 325 |
await f.write(json.dumps(logs, indent=2))
|
| 326 |
|
| 327 |
except (PermissionError, OSError) as e:
|
| 328 |
-
# If file logging fails, just log to console
|
| 329 |
logger.warning(f"Cannot write prediction log to file: {e}")
|
| 330 |
logger.info(f"Prediction logged: {json.dumps(log_entry)}")
|
| 331 |
|
|
@@ -333,27 +408,8 @@ async def log_prediction(text: str, prediction: str, confidence: float, client_i
|
|
| 333 |
logger.error(f"Failed to log prediction: {e}")
|
| 334 |
|
| 335 |
|
| 336 |
-
async def log_batch_prediction(total_texts: int, successful_predictions: int, client_ip: str, processing_time: float):
|
| 337 |
-
"""Log batch prediction details"""
|
| 338 |
-
try:
|
| 339 |
-
log_entry = {
|
| 340 |
-
"timestamp": datetime.now().isoformat(),
|
| 341 |
-
"type": "batch_prediction",
|
| 342 |
-
"client_ip": client_ip,
|
| 343 |
-
"total_texts": total_texts,
|
| 344 |
-
"successful_predictions": successful_predictions,
|
| 345 |
-
"processing_time": processing_time,
|
| 346 |
-
"success_rate": successful_predictions / total_texts if total_texts > 0 else 0
|
| 347 |
-
}
|
| 348 |
-
|
| 349 |
-
logger.info(f"Batch prediction logged: {json.dumps(log_entry)}")
|
| 350 |
-
|
| 351 |
-
except Exception as e:
|
| 352 |
-
logger.error(f"Failed to log batch prediction: {e}")
|
| 353 |
-
|
| 354 |
-
|
| 355 |
# Global variables
|
| 356 |
-
model_manager =
|
| 357 |
|
| 358 |
# Initialize automation manager
|
| 359 |
automation_manager = None
|
|
@@ -363,17 +419,21 @@ deployment_manager = None
|
|
| 363 |
traffic_router = None
|
| 364 |
model_registry = None
|
| 365 |
|
| 366 |
-
|
| 367 |
@asynccontextmanager
|
| 368 |
async def lifespan(app: FastAPI):
|
| 369 |
-
"""Manage application lifespan with
|
| 370 |
global deployment_manager, traffic_router, model_registry
|
| 371 |
|
| 372 |
-
logger.info("Starting FastAPI application...")
|
| 373 |
|
| 374 |
# Startup tasks
|
| 375 |
model_manager.load_model()
|
| 376 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 377 |
# Initialize deployment components
|
| 378 |
try:
|
| 379 |
deployment_manager = BlueGreenDeploymentManager()
|
|
@@ -383,72 +443,37 @@ async def lifespan(app: FastAPI):
|
|
| 383 |
except Exception as e:
|
| 384 |
logger.error(f"Failed to initialize deployment system: {e}")
|
| 385 |
|
| 386 |
-
# Initialize monitoring
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 387 |
|
| 388 |
yield
|
| 389 |
|
| 390 |
# Shutdown tasks
|
| 391 |
-
logger.info("Shutting down FastAPI application...")
|
| 392 |
-
|
| 393 |
-
# Initialize monitoring components
|
| 394 |
-
prediction_monitor = PredictionMonitor(base_dir=Path("/tmp"))
|
| 395 |
-
metrics_collector = MetricsCollector(base_dir=Path("/tmp"))
|
| 396 |
-
alert_system = AlertSystem(base_dir=Path("/tmp"))
|
| 397 |
-
|
| 398 |
-
# Start monitoring
|
| 399 |
-
prediction_monitor.start_monitoring()
|
| 400 |
-
|
| 401 |
-
alert_system.add_notification_handler("console", console_notification_handler)
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
@asynccontextmanager
|
| 405 |
-
async def lifespan(app: FastAPI):
|
| 406 |
-
"""Manage application lifespan"""
|
| 407 |
-
logger.info("Starting FastAPI application...")
|
| 408 |
-
|
| 409 |
-
# Startup tasks
|
| 410 |
-
model_manager.load_model()
|
| 411 |
-
|
| 412 |
-
# Schedule periodic health checks
|
| 413 |
-
asyncio.create_task(periodic_health_check())
|
| 414 |
-
|
| 415 |
-
yield
|
| 416 |
-
|
| 417 |
-
# Shutdown tasks
|
| 418 |
-
logger.info("Shutting down FastAPI application...")
|
| 419 |
-
|
| 420 |
-
|
| 421 |
-
# Background tasks
|
| 422 |
-
async def periodic_health_check():
|
| 423 |
-
"""Periodic health check"""
|
| 424 |
-
while True:
|
| 425 |
-
try:
|
| 426 |
-
await asyncio.sleep(300) # Check every 5 minutes
|
| 427 |
-
health_status = model_manager.health_check()
|
| 428 |
-
|
| 429 |
-
if health_status["status"] == "unhealthy":
|
| 430 |
-
logger.warning(
|
| 431 |
-
"Model health check failed, attempting to reload...")
|
| 432 |
-
model_manager.load_model()
|
| 433 |
-
|
| 434 |
-
except Exception as e:
|
| 435 |
-
logger.error(f"Periodic health check failed: {e}")
|
| 436 |
-
|
| 437 |
|
| 438 |
# Create FastAPI app
|
| 439 |
app = FastAPI(
|
| 440 |
-
title="Fake News Detection API",
|
| 441 |
-
description="Production-ready API for fake news detection with
|
| 442 |
-
version="2.
|
| 443 |
docs_url="/docs",
|
| 444 |
redoc_url="/redoc",
|
| 445 |
lifespan=lifespan
|
| 446 |
)
|
| 447 |
|
| 448 |
-
# Add middleware
|
| 449 |
app.add_middleware(
|
| 450 |
CORSMiddleware,
|
| 451 |
-
allow_origins=["*"],
|
| 452 |
allow_credentials=True,
|
| 453 |
allow_methods=["*"],
|
| 454 |
allow_headers=["*"],
|
|
@@ -456,38 +481,31 @@ app.add_middleware(
|
|
| 456 |
|
| 457 |
app.add_middleware(
|
| 458 |
TrustedHostMiddleware,
|
| 459 |
-
allowed_hosts=["*"]
|
| 460 |
)
|
| 461 |
|
| 462 |
-
#
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
| 466 |
-
|
| 467 |
-
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
| 472 |
-
)
|
| 473 |
-
|
| 474 |
-
# Add security definitions
|
| 475 |
-
openapi_schema["components"]["securitySchemes"] = {
|
| 476 |
-
"Bearer": {
|
| 477 |
-
"type": "http",
|
| 478 |
-
"scheme": "bearer",
|
| 479 |
-
"bearerFormat": "JWT",
|
| 480 |
-
}
|
| 481 |
-
}
|
| 482 |
-
|
| 483 |
-
app.openapi_schema = openapi_schema
|
| 484 |
-
return app.openapi_schema
|
| 485 |
-
|
| 486 |
-
# Set the custom OpenAPI function
|
| 487 |
-
app.openapi = custom_openapi
|
| 488 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 489 |
|
| 490 |
-
# Request
|
| 491 |
class PredictionRequest(BaseModel):
|
| 492 |
text: str = Field(..., min_length=1, max_length=10000,
|
| 493 |
description="Text to analyze for fake news detection")
|
|
@@ -496,67 +514,15 @@ class PredictionRequest(BaseModel):
|
|
| 496 |
def validate_text(cls, v):
|
| 497 |
if not v or not v.strip():
|
| 498 |
raise ValueError('Text cannot be empty')
|
| 499 |
-
|
| 500 |
-
# Basic content validation
|
| 501 |
if len(v.strip()) < 10:
|
| 502 |
raise ValueError('Text must be at least 10 characters long')
|
| 503 |
-
|
| 504 |
-
# Check for suspicious patterns
|
| 505 |
suspicious_patterns = ['<script', 'javascript:', 'data:']
|
| 506 |
if any(pattern in v.lower() for pattern in suspicious_patterns):
|
| 507 |
raise ValueError('Text contains suspicious content')
|
| 508 |
-
|
| 509 |
return v.strip()
|
| 510 |
|
| 511 |
|
| 512 |
-
|
| 513 |
-
prediction: str = Field(...,
|
| 514 |
-
description="Prediction result: 'Real' or 'Fake'")
|
| 515 |
-
confidence: float = Field(..., ge=0.0, le=1.0,
|
| 516 |
-
description="Confidence score between 0 and 1")
|
| 517 |
-
model_version: str = Field(...,
|
| 518 |
-
description="Version of the model used for prediction")
|
| 519 |
-
timestamp: str = Field(..., description="Timestamp of the prediction")
|
| 520 |
-
processing_time: float = Field(...,
|
| 521 |
-
description="Time taken for processing in seconds")
|
| 522 |
-
|
| 523 |
-
|
| 524 |
-
class BatchPredictionRequest(BaseModel):
|
| 525 |
-
texts: List[str] = Field(..., min_items=1, max_items=10,
|
| 526 |
-
description="List of texts to analyze")
|
| 527 |
-
|
| 528 |
-
@validator('texts')
|
| 529 |
-
def validate_texts(cls, v):
|
| 530 |
-
if not v:
|
| 531 |
-
raise ValueError('Texts list cannot be empty')
|
| 532 |
-
|
| 533 |
-
for text in v:
|
| 534 |
-
if not text or not text.strip():
|
| 535 |
-
raise ValueError('All texts must be non-empty')
|
| 536 |
-
|
| 537 |
-
if len(text.strip()) < 10:
|
| 538 |
-
raise ValueError(
|
| 539 |
-
'All texts must be at least 10 characters long')
|
| 540 |
-
|
| 541 |
-
return [text.strip() for text in v]
|
| 542 |
-
|
| 543 |
-
|
| 544 |
-
class BatchPredictionResponse(BaseModel):
|
| 545 |
-
predictions: List[PredictionResponse]
|
| 546 |
-
total_count: int
|
| 547 |
-
processing_time: float
|
| 548 |
-
|
| 549 |
-
|
| 550 |
-
class HealthResponse(BaseModel):
|
| 551 |
-
status: str
|
| 552 |
-
timestamp: str
|
| 553 |
-
model_health: Dict[str, Any]
|
| 554 |
-
system_health: Dict[str, Any]
|
| 555 |
-
api_health: Dict[str, Any]
|
| 556 |
-
environment_info: Dict[str, Any]
|
| 557 |
-
|
| 558 |
-
|
| 559 |
-
# Rate limiting
|
| 560 |
async def rate_limit_check(request: Request):
|
| 561 |
"""Check rate limits"""
|
| 562 |
client_ip = request.client.host
|
|
@@ -565,7 +531,7 @@ async def rate_limit_check(request: Request):
|
|
| 565 |
# Clean old entries
|
| 566 |
rate_limit_storage[client_ip] = [
|
| 567 |
timestamp for timestamp in rate_limit_storage[client_ip]
|
| 568 |
-
if current_time - timestamp < 3600
|
| 569 |
]
|
| 570 |
|
| 571 |
# Check rate limit (100 requests per hour)
|
|
@@ -579,14 +545,11 @@ async def rate_limit_check(request: Request):
|
|
| 579 |
rate_limit_storage[client_ip].append(current_time)
|
| 580 |
|
| 581 |
|
| 582 |
-
# Logging middleware
|
| 583 |
@app.middleware("http")
|
| 584 |
async def log_requests(request: Request, call_next):
|
| 585 |
-
"""Log all requests"""
|
| 586 |
start_time = time.time()
|
| 587 |
-
|
| 588 |
response = await call_next(request)
|
| 589 |
-
|
| 590 |
process_time = time.time() - start_time
|
| 591 |
|
| 592 |
log_data = {
|
|
@@ -595,76 +558,42 @@ async def log_requests(request: Request, call_next):
|
|
| 595 |
"client_ip": request.client.host,
|
| 596 |
"status_code": response.status_code,
|
| 597 |
"process_time": process_time,
|
| 598 |
-
"timestamp": datetime.now().isoformat()
|
|
|
|
|
|
|
| 599 |
}
|
| 600 |
|
| 601 |
logger.info(f"Request: {json.dumps(log_data)}")
|
| 602 |
-
|
| 603 |
return response
|
| 604 |
|
| 605 |
|
| 606 |
-
#
|
| 607 |
-
@app.
|
| 608 |
-
async def http_exception_handler(request: Request, exc: HTTPException):
|
| 609 |
-
"""Handle HTTP exceptions"""
|
| 610 |
-
error_data = {
|
| 611 |
-
"error": True,
|
| 612 |
-
"message": exc.detail,
|
| 613 |
-
"status_code": exc.status_code,
|
| 614 |
-
"timestamp": datetime.now().isoformat(),
|
| 615 |
-
"path": request.url.path
|
| 616 |
-
}
|
| 617 |
-
|
| 618 |
-
logger.error(f"HTTP Exception: {json.dumps(error_data)}")
|
| 619 |
-
|
| 620 |
-
return JSONResponse(
|
| 621 |
-
status_code=exc.status_code,
|
| 622 |
-
content=error_data
|
| 623 |
-
)
|
| 624 |
-
|
| 625 |
-
|
| 626 |
-
@app.exception_handler(Exception)
|
| 627 |
-
async def general_exception_handler(request: Request, exc: Exception):
|
| 628 |
-
"""Handle general exceptions"""
|
| 629 |
-
error_data = {
|
| 630 |
-
"error": True,
|
| 631 |
-
"message": "Internal server error",
|
| 632 |
-
"timestamp": datetime.now().isoformat(),
|
| 633 |
-
"path": request.url.path
|
| 634 |
-
}
|
| 635 |
-
|
| 636 |
-
logger.error(f"General Exception: {str(exc)}\n{traceback.format_exc()}")
|
| 637 |
-
|
| 638 |
-
return JSONResponse(
|
| 639 |
-
status_code=500,
|
| 640 |
-
content=error_data
|
| 641 |
-
)
|
| 642 |
-
|
| 643 |
-
|
| 644 |
-
# API Routes
|
| 645 |
-
@app.get("/", response_model=Dict[str, str])
|
| 646 |
async def root():
|
| 647 |
-
"""Root endpoint"""
|
| 648 |
return {
|
| 649 |
-
"message": "Fake News Detection API",
|
| 650 |
-
"version": "2.
|
| 651 |
"environment": path_manager.environment,
|
|
|
|
|
|
|
|
|
|
| 652 |
"documentation": "/docs",
|
| 653 |
"health_check": "/health"
|
| 654 |
}
|
| 655 |
|
| 656 |
|
| 657 |
-
@app.post("/predict", response_model=
|
| 658 |
async def predict(
|
| 659 |
request: PredictionRequest,
|
| 660 |
background_tasks: BackgroundTasks,
|
| 661 |
http_request: Request,
|
| 662 |
_: None = Depends(rate_limit_check)
|
| 663 |
-
|
| 664 |
"""
|
| 665 |
-
|
| 666 |
- **text**: The news article text to analyze
|
| 667 |
-
- **returns**:
|
| 668 |
"""
|
| 669 |
start_time = time.time()
|
| 670 |
client_ip = http_request.client.host
|
|
@@ -678,62 +607,49 @@ async def predict(
|
|
| 678 |
detail="Model is not available. Please try again later."
|
| 679 |
)
|
| 680 |
|
| 681 |
-
#
|
| 682 |
-
|
| 683 |
-
|
| 684 |
-
|
| 685 |
-
|
| 686 |
-
|
| 687 |
-
|
| 688 |
-
|
| 689 |
-
|
| 690 |
-
|
| 691 |
-
|
| 692 |
-
|
| 693 |
-
# Extract results from traffic router response
|
| 694 |
-
label = result['prediction']
|
| 695 |
-
confidence = result['confidence']
|
| 696 |
-
processing_time = result['processing_time']
|
| 697 |
-
|
| 698 |
-
logger.debug(f"Used {environment} environment for prediction")
|
| 699 |
-
|
| 700 |
-
except Exception as e:
|
| 701 |
-
logger.warning(f"Traffic router failed, falling back to model manager: {e}")
|
| 702 |
-
# Fallback to original model manager
|
| 703 |
-
label, confidence = model_manager.predict(request.text)
|
| 704 |
-
processing_time = time.time() - start_time
|
| 705 |
-
environment = "blue" # Default fallback
|
| 706 |
-
else:
|
| 707 |
-
# Fallback to original model manager
|
| 708 |
-
label, confidence = model_manager.predict(request.text)
|
| 709 |
-
processing_time = time.time() - start_time
|
| 710 |
-
environment = "blue" # Default when no traffic router
|
| 711 |
|
| 712 |
# Record prediction for monitoring
|
| 713 |
-
prediction_monitor
|
| 714 |
-
|
| 715 |
-
|
| 716 |
-
|
| 717 |
-
|
| 718 |
-
|
| 719 |
-
|
| 720 |
-
|
| 721 |
-
|
|
|
|
| 722 |
|
| 723 |
# Record API request metrics
|
| 724 |
-
metrics_collector
|
| 725 |
-
|
| 726 |
-
|
| 727 |
-
|
| 728 |
-
|
| 729 |
-
|
| 730 |
-
|
|
|
|
| 731 |
|
| 732 |
-
# Create response
|
| 733 |
-
response =
|
| 734 |
prediction=label,
|
| 735 |
confidence=confidence,
|
| 736 |
model_version=model_manager.model_metadata.get('model_version', 'unknown'),
|
|
|
|
|
|
|
|
|
|
| 737 |
timestamp=datetime.now().isoformat(),
|
| 738 |
processing_time=processing_time
|
| 739 |
)
|
|
@@ -753,36 +669,40 @@ async def predict(
|
|
| 753 |
except HTTPException:
|
| 754 |
# Record error for failed requests
|
| 755 |
processing_time = time.time() - start_time
|
| 756 |
-
prediction_monitor
|
| 757 |
-
|
| 758 |
-
|
| 759 |
-
|
| 760 |
-
|
| 761 |
-
|
| 762 |
-
|
| 763 |
-
|
| 764 |
-
|
| 765 |
-
|
| 766 |
-
|
| 767 |
-
|
|
|
|
|
|
|
| 768 |
raise
|
| 769 |
except Exception as e:
|
| 770 |
processing_time = time.time() - start_time
|
| 771 |
|
| 772 |
# Record error
|
| 773 |
-
prediction_monitor
|
| 774 |
-
|
| 775 |
-
|
| 776 |
-
|
| 777 |
-
|
|
|
|
| 778 |
|
| 779 |
-
metrics_collector
|
| 780 |
-
|
| 781 |
-
|
| 782 |
-
|
| 783 |
-
|
| 784 |
-
|
| 785 |
-
|
|
|
|
| 786 |
|
| 787 |
logger.error(f"Prediction failed: {e}")
|
| 788 |
raise HTTPException(
|
|
@@ -791,90 +711,11 @@ async def predict(
|
|
| 791 |
)
|
| 792 |
|
| 793 |
|
| 794 |
-
@app.
|
| 795 |
-
async def predict_batch(
|
| 796 |
-
request: BatchPredictionRequest,
|
| 797 |
-
background_tasks: BackgroundTasks,
|
| 798 |
-
http_request: Request,
|
| 799 |
-
_: None = Depends(rate_limit_check)
|
| 800 |
-
):
|
| 801 |
-
"""
|
| 802 |
-
Predict multiple news articles in batch
|
| 803 |
-
- **texts**: List of news article texts to analyze
|
| 804 |
-
- **returns**: List of prediction results
|
| 805 |
-
"""
|
| 806 |
-
start_time = time.time()
|
| 807 |
-
|
| 808 |
-
try:
|
| 809 |
-
# Check model health
|
| 810 |
-
if model_manager.health_status != "healthy":
|
| 811 |
-
raise HTTPException(
|
| 812 |
-
status_code=503,
|
| 813 |
-
detail="Model is not available. Please try again later."
|
| 814 |
-
)
|
| 815 |
-
|
| 816 |
-
predictions = []
|
| 817 |
-
|
| 818 |
-
for text in request.texts:
|
| 819 |
-
try:
|
| 820 |
-
label, confidence = model_manager.predict(text)
|
| 821 |
-
|
| 822 |
-
prediction = PredictionResponse(
|
| 823 |
-
prediction=label,
|
| 824 |
-
confidence=confidence,
|
| 825 |
-
model_version=model_manager.model_metadata.get(
|
| 826 |
-
'model_version', 'unknown'),
|
| 827 |
-
timestamp=datetime.now().isoformat(),
|
| 828 |
-
processing_time=0.0 # Will be updated with total time
|
| 829 |
-
)
|
| 830 |
-
|
| 831 |
-
predictions.append(prediction)
|
| 832 |
-
|
| 833 |
-
except Exception as e:
|
| 834 |
-
logger.error(f"Batch prediction failed for text: {e}")
|
| 835 |
-
# Continue with other texts
|
| 836 |
-
continue
|
| 837 |
-
|
| 838 |
-
# Calculate total processing time
|
| 839 |
-
total_processing_time = time.time() - start_time
|
| 840 |
-
|
| 841 |
-
# Update processing time for all predictions
|
| 842 |
-
for prediction in predictions:
|
| 843 |
-
prediction.processing_time = total_processing_time / \
|
| 844 |
-
len(predictions)
|
| 845 |
-
|
| 846 |
-
response = BatchPredictionResponse(
|
| 847 |
-
predictions=predictions,
|
| 848 |
-
total_count=len(predictions),
|
| 849 |
-
processing_time=total_processing_time
|
| 850 |
-
)
|
| 851 |
-
|
| 852 |
-
# Log batch prediction (background task)
|
| 853 |
-
background_tasks.add_task(
|
| 854 |
-
log_batch_prediction,
|
| 855 |
-
len(request.texts),
|
| 856 |
-
len(predictions),
|
| 857 |
-
http_request.client.host,
|
| 858 |
-
total_processing_time
|
| 859 |
-
)
|
| 860 |
-
|
| 861 |
-
return response
|
| 862 |
-
|
| 863 |
-
except HTTPException:
|
| 864 |
-
raise
|
| 865 |
-
except Exception as e:
|
| 866 |
-
logger.error(f"Batch prediction failed: {e}")
|
| 867 |
-
raise HTTPException(
|
| 868 |
-
status_code=500,
|
| 869 |
-
detail=f"Batch prediction failed: {str(e)}"
|
| 870 |
-
)
|
| 871 |
-
|
| 872 |
-
|
| 873 |
-
@app.get("/health", response_model=HealthResponse)
|
| 874 |
async def health_check():
|
| 875 |
"""
|
| 876 |
-
|
| 877 |
-
- **returns**: Detailed health status
|
| 878 |
"""
|
| 879 |
try:
|
| 880 |
# Model health
|
|
@@ -897,843 +738,193 @@ async def health_check():
|
|
| 897 |
|
| 898 |
# Environment info
|
| 899 |
environment_info = path_manager.get_environment_info()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 900 |
|
| 901 |
# Overall status
|
| 902 |
overall_status = "healthy" if model_health["status"] == "healthy" else "unhealthy"
|
| 903 |
|
| 904 |
-
return
|
| 905 |
status=overall_status,
|
| 906 |
timestamp=datetime.now().isoformat(),
|
| 907 |
model_health=model_health,
|
| 908 |
system_health=system_health,
|
| 909 |
api_health=api_health,
|
| 910 |
-
environment_info=environment_info
|
|
|
|
| 911 |
)
|
| 912 |
|
| 913 |
except Exception as e:
|
| 914 |
logger.error(f"Health check failed: {e}")
|
| 915 |
-
return
|
| 916 |
status="unhealthy",
|
| 917 |
timestamp=datetime.now().isoformat(),
|
| 918 |
model_health={"status": "unhealthy", "error": str(e)},
|
| 919 |
system_health={"error": str(e)},
|
| 920 |
api_health={"error": str(e)},
|
| 921 |
-
environment_info={"error": str(e)}
|
|
|
|
| 922 |
)
|
| 923 |
|
| 924 |
|
| 925 |
-
@app.get("/
|
| 926 |
-
async def
|
| 927 |
"""
|
| 928 |
-
|
| 929 |
-
- **returns**:
|
| 930 |
"""
|
| 931 |
try:
|
| 932 |
-
|
| 933 |
-
|
| 934 |
-
|
| 935 |
-
|
| 936 |
-
|
| 937 |
-
|
| 938 |
-
|
| 939 |
-
|
| 940 |
-
|
| 941 |
-
|
| 942 |
-
|
| 943 |
-
|
| 944 |
-
# Extract cross-validation information
|
| 945 |
-
cv_info = metadata.get('cross_validation', {})
|
| 946 |
-
if cv_info:
|
| 947 |
-
cv_details = {
|
| 948 |
-
'cross_validation_available': True,
|
| 949 |
-
'n_splits': cv_info.get('n_splits', 'Unknown'),
|
| 950 |
-
'test_scores': cv_info.get('test_scores', {}),
|
| 951 |
-
'train_scores': cv_info.get('train_scores', {}),
|
| 952 |
-
'overfitting_score': cv_info.get('overfitting_score', 'Unknown'),
|
| 953 |
-
'stability_score': cv_info.get('stability_score', 'Unknown'),
|
| 954 |
-
'individual_fold_results': cv_info.get('individual_fold_results', [])
|
| 955 |
-
}
|
| 956 |
-
|
| 957 |
-
# Add summary statistics
|
| 958 |
-
test_scores = cv_info.get('test_scores', {})
|
| 959 |
-
if 'f1' in test_scores:
|
| 960 |
-
cv_details['cv_f1_summary'] = {
|
| 961 |
-
'mean': test_scores['f1'].get('mean', 'Unknown'),
|
| 962 |
-
'std': test_scores['f1'].get('std', 'Unknown'),
|
| 963 |
-
'min': test_scores['f1'].get('min', 'Unknown'),
|
| 964 |
-
'max': test_scores['f1'].get('max', 'Unknown'),
|
| 965 |
-
'scores': test_scores['f1'].get('scores', [])
|
| 966 |
-
}
|
| 967 |
-
|
| 968 |
-
if 'accuracy' in test_scores:
|
| 969 |
-
cv_details['cv_accuracy_summary'] = {
|
| 970 |
-
'mean': test_scores['accuracy'].get('mean', 'Unknown'),
|
| 971 |
-
'std': test_scores['accuracy'].get('std', 'Unknown'),
|
| 972 |
-
'min': test_scores['accuracy'].get('min', 'Unknown'),
|
| 973 |
-
'max': test_scores['accuracy'].get('max', 'Unknown'),
|
| 974 |
-
'scores': test_scores['accuracy'].get('scores', [])
|
| 975 |
-
}
|
| 976 |
-
|
| 977 |
-
# Add model comparison results if available
|
| 978 |
-
statistical_validation = metadata.get('statistical_validation', {})
|
| 979 |
-
if statistical_validation:
|
| 980 |
-
cv_details['statistical_validation'] = statistical_validation
|
| 981 |
-
|
| 982 |
-
promotion_validation = metadata.get('promotion_validation', {})
|
| 983 |
-
if promotion_validation:
|
| 984 |
-
cv_details['promotion_validation'] = promotion_validation
|
| 985 |
-
|
| 986 |
-
# Add model version and training info
|
| 987 |
-
cv_details['model_info'] = {
|
| 988 |
-
'model_version': metadata.get('model_version', 'Unknown'),
|
| 989 |
-
'model_type': metadata.get('model_type', 'Unknown'),
|
| 990 |
-
'training_timestamp': metadata.get('timestamp', 'Unknown'),
|
| 991 |
-
'promotion_timestamp': metadata.get('promotion_timestamp'),
|
| 992 |
-
'cv_f1_mean': metadata.get('cv_f1_mean'),
|
| 993 |
-
'cv_f1_std': metadata.get('cv_f1_std'),
|
| 994 |
-
'cv_accuracy_mean': metadata.get('cv_accuracy_mean'),
|
| 995 |
-
'cv_accuracy_std': metadata.get('cv_accuracy_std')
|
| 996 |
-
}
|
| 997 |
-
|
| 998 |
-
except Exception as e:
|
| 999 |
-
cv_details = {
|
| 1000 |
-
'cross_validation_available': False,
|
| 1001 |
-
'error': f"Failed to load CV details: {str(e)}"
|
| 1002 |
-
}
|
| 1003 |
-
else:
|
| 1004 |
-
cv_details = {
|
| 1005 |
-
'cross_validation_available': False,
|
| 1006 |
-
'error': "No metadata file found"
|
| 1007 |
-
}
|
| 1008 |
-
|
| 1009 |
-
# Combine basic health with detailed CV information
|
| 1010 |
-
detailed_response = {
|
| 1011 |
-
'basic_health': basic_health,
|
| 1012 |
-
'cross_validation_details': cv_details,
|
| 1013 |
-
'detailed_check_timestamp': datetime.now().isoformat()
|
| 1014 |
-
}
|
| 1015 |
-
|
| 1016 |
-
return detailed_response
|
| 1017 |
-
|
| 1018 |
-
except Exception as e:
|
| 1019 |
-
logger.error(f"Detailed health check failed: {e}")
|
| 1020 |
-
return {
|
| 1021 |
-
'basic_health': {'status': 'unhealthy', 'error': str(e)},
|
| 1022 |
-
'cross_validation_details': {
|
| 1023 |
-
'cross_validation_available': False,
|
| 1024 |
-
'error': f"Detailed health check failed: {str(e)}"
|
| 1025 |
},
|
| 1026 |
-
|
|
|
|
| 1027 |
}
|
| 1028 |
|
| 1029 |
-
|
| 1030 |
-
|
| 1031 |
-
|
| 1032 |
-
|
| 1033 |
-
|
| 1034 |
-
|
| 1035 |
-
|
| 1036 |
-
|
| 1037 |
-
metadata_path = path_manager.get_metadata_path()
|
| 1038 |
-
|
| 1039 |
-
if not metadata_path.exists():
|
| 1040 |
-
raise HTTPException(
|
| 1041 |
-
status_code=404,
|
| 1042 |
-
detail="Model metadata not found. Train a model first."
|
| 1043 |
-
)
|
| 1044 |
-
|
| 1045 |
-
with open(metadata_path, 'r') as f:
|
| 1046 |
-
metadata = json.load(f)
|
| 1047 |
-
|
| 1048 |
-
cv_info = metadata.get('cross_validation', {})
|
| 1049 |
-
|
| 1050 |
-
if not cv_info:
|
| 1051 |
-
raise HTTPException(
|
| 1052 |
-
status_code=404,
|
| 1053 |
-
detail="No cross-validation results found. Model may not have been trained with CV."
|
| 1054 |
-
)
|
| 1055 |
-
|
| 1056 |
-
# Structure the CV results for API response
|
| 1057 |
-
cv_response = {
|
| 1058 |
-
'model_version': metadata.get('model_version', 'Unknown'),
|
| 1059 |
-
'model_type': metadata.get('model_type', 'Unknown'),
|
| 1060 |
-
'training_timestamp': metadata.get('timestamp', 'Unknown'),
|
| 1061 |
-
'cross_validation': {
|
| 1062 |
-
'methodology': {
|
| 1063 |
-
'n_splits': cv_info.get('n_splits', 'Unknown'),
|
| 1064 |
-
'cv_type': 'StratifiedKFold',
|
| 1065 |
-
'random_state': 42
|
| 1066 |
-
},
|
| 1067 |
-
'test_scores': cv_info.get('test_scores', {}),
|
| 1068 |
-
'train_scores': cv_info.get('train_scores', {}),
|
| 1069 |
-
'performance_indicators': {
|
| 1070 |
-
'overfitting_score': cv_info.get('overfitting_score', 'Unknown'),
|
| 1071 |
-
'stability_score': cv_info.get('stability_score', 'Unknown')
|
| 1072 |
-
},
|
| 1073 |
-
'individual_fold_results': cv_info.get('individual_fold_results', [])
|
| 1074 |
-
},
|
| 1075 |
-
'statistical_validation': metadata.get('statistical_validation', {}),
|
| 1076 |
-
'promotion_validation': metadata.get('promotion_validation', {}),
|
| 1077 |
-
'summary_statistics': {
|
| 1078 |
-
'cv_f1_mean': metadata.get('cv_f1_mean'),
|
| 1079 |
-
'cv_f1_std': metadata.get('cv_f1_std'),
|
| 1080 |
-
'cv_accuracy_mean': metadata.get('cv_accuracy_mean'),
|
| 1081 |
-
'cv_accuracy_std': metadata.get('cv_accuracy_std')
|
| 1082 |
}
|
| 1083 |
-
|
| 1084 |
-
|
| 1085 |
-
|
| 1086 |
-
|
| 1087 |
-
except HTTPException:
|
| 1088 |
-
raise
|
| 1089 |
-
except Exception as e:
|
| 1090 |
-
logger.error(f"CV results retrieval failed: {e}")
|
| 1091 |
-
raise HTTPException(
|
| 1092 |
-
status_code=500,
|
| 1093 |
-
detail=f"Failed to retrieve CV results: {str(e)}"
|
| 1094 |
-
)
|
| 1095 |
|
|
|
|
| 1096 |
|
| 1097 |
-
@app.get("/cv/comparison")
|
| 1098 |
-
async def get_model_comparison_results():
|
| 1099 |
-
"""
|
| 1100 |
-
Get latest model comparison results from retraining
|
| 1101 |
-
- **returns**: Statistical comparison results between models
|
| 1102 |
-
"""
|
| 1103 |
-
try:
|
| 1104 |
-
# Load comparison logs
|
| 1105 |
-
comparison_log_path = path_manager.get_logs_path("model_comparison.json")
|
| 1106 |
-
|
| 1107 |
-
if not comparison_log_path.exists():
|
| 1108 |
-
raise HTTPException(
|
| 1109 |
-
status_code=404,
|
| 1110 |
-
detail="No model comparison results found."
|
| 1111 |
-
)
|
| 1112 |
-
|
| 1113 |
-
with open(comparison_log_path, 'r') as f:
|
| 1114 |
-
comparison_logs = json.load(f)
|
| 1115 |
-
|
| 1116 |
-
if not comparison_logs:
|
| 1117 |
-
raise HTTPException(
|
| 1118 |
-
status_code=404,
|
| 1119 |
-
detail="No comparison entries found."
|
| 1120 |
-
)
|
| 1121 |
-
|
| 1122 |
-
# Get the most recent comparison
|
| 1123 |
-
latest_comparison = comparison_logs[-1]
|
| 1124 |
-
comparison_details = latest_comparison.get('comparison_details', {})
|
| 1125 |
-
|
| 1126 |
-
# Structure the response
|
| 1127 |
-
comparison_response = {
|
| 1128 |
-
'comparison_timestamp': latest_comparison.get('timestamp', 'Unknown'),
|
| 1129 |
-
'session_id': latest_comparison.get('session_id', 'Unknown'),
|
| 1130 |
-
'models_compared': {
|
| 1131 |
-
'model1_name': comparison_details.get('model1_name', 'Production'),
|
| 1132 |
-
'model2_name': comparison_details.get('model2_name', 'Candidate')
|
| 1133 |
-
},
|
| 1134 |
-
'cv_methodology': {
|
| 1135 |
-
'cv_folds': comparison_details.get('cv_folds', 'Unknown')
|
| 1136 |
-
},
|
| 1137 |
-
'model_performance': {
|
| 1138 |
-
'production_model': comparison_details.get('model1_cv_results', {}),
|
| 1139 |
-
'candidate_model': comparison_details.get('model2_cv_results', {})
|
| 1140 |
-
},
|
| 1141 |
-
'metric_comparisons': comparison_details.get('metric_comparisons', {}),
|
| 1142 |
-
'statistical_tests': comparison_details.get('statistical_tests', {}),
|
| 1143 |
-
'promotion_decision': comparison_details.get('promotion_decision', {}),
|
| 1144 |
-
'summary': {
|
| 1145 |
-
'decision': comparison_details.get('promotion_decision', {}).get('promote_candidate', False),
|
| 1146 |
-
'reason': comparison_details.get('promotion_decision', {}).get('reason', 'Unknown'),
|
| 1147 |
-
'confidence': comparison_details.get('promotion_decision', {}).get('confidence', 0)
|
| 1148 |
-
}
|
| 1149 |
-
}
|
| 1150 |
-
|
| 1151 |
-
return comparison_response
|
| 1152 |
-
|
| 1153 |
-
except HTTPException:
|
| 1154 |
-
raise
|
| 1155 |
except Exception as e:
|
| 1156 |
-
logger.error(f"Model
|
| 1157 |
raise HTTPException(
|
| 1158 |
status_code=500,
|
| 1159 |
-
detail=f"Failed to retrieve model
|
| 1160 |
)
|
| 1161 |
-
|
| 1162 |
|
| 1163 |
-
|
| 1164 |
-
|
|
|
|
| 1165 |
"""
|
| 1166 |
-
Get
|
| 1167 |
-
- **returns**:
|
| 1168 |
"""
|
| 1169 |
try:
|
| 1170 |
-
|
| 1171 |
-
|
| 1172 |
-
|
| 1173 |
-
|
| 1174 |
-
|
| 1175 |
-
|
| 1176 |
-
|
| 1177 |
-
|
| 1178 |
-
|
| 1179 |
-
|
| 1180 |
-
|
| 1181 |
-
|
| 1182 |
-
metadata = json.load(f)
|
| 1183 |
-
|
| 1184 |
-
# Extract CV summary
|
| 1185 |
-
cv_info = metadata.get('cross_validation', {})
|
| 1186 |
-
if cv_info:
|
| 1187 |
-
test_scores = cv_info.get('test_scores', {})
|
| 1188 |
-
cv_summary = {
|
| 1189 |
-
'cv_available': True,
|
| 1190 |
-
'cv_folds': cv_info.get('n_splits', 'Unknown'),
|
| 1191 |
-
'cv_f1_mean': test_scores.get('f1', {}).get('mean'),
|
| 1192 |
-
'cv_f1_std': test_scores.get('f1', {}).get('std'),
|
| 1193 |
-
'cv_accuracy_mean': test_scores.get('accuracy', {}).get('mean'),
|
| 1194 |
-
'cv_accuracy_std': test_scores.get('accuracy', {}).get('std'),
|
| 1195 |
-
'overfitting_score': cv_info.get('overfitting_score'),
|
| 1196 |
-
'stability_score': cv_info.get('stability_score')
|
| 1197 |
-
}
|
| 1198 |
-
else:
|
| 1199 |
-
cv_summary = {'cv_available': False}
|
| 1200 |
-
|
| 1201 |
-
except Exception as e:
|
| 1202 |
-
cv_summary = {'cv_available': False, 'cv_error': str(e)}
|
| 1203 |
-
else:
|
| 1204 |
-
cv_summary = {'cv_available': False, 'cv_error': 'No metadata file'}
|
| 1205 |
-
|
| 1206 |
-
metrics = {
|
| 1207 |
-
'api_metrics': {
|
| 1208 |
-
'total_requests': total_requests,
|
| 1209 |
-
'unique_clients': unique_clients,
|
| 1210 |
-
'timestamp': datetime.now().isoformat()
|
| 1211 |
-
},
|
| 1212 |
-
'model_info': {
|
| 1213 |
-
'model_version': model_manager.model_metadata.get('model_version', 'unknown'),
|
| 1214 |
-
'model_health': model_manager.health_status,
|
| 1215 |
-
'last_health_check': model_manager.last_health_check.isoformat() if model_manager.last_health_check else None
|
| 1216 |
},
|
| 1217 |
-
|
| 1218 |
-
|
| 1219 |
-
|
| 1220 |
-
'
|
| 1221 |
-
'available_models': path_manager.list_available_models()
|
| 1222 |
}
|
| 1223 |
}
|
| 1224 |
|
| 1225 |
-
|
| 1226 |
-
|
| 1227 |
-
|
| 1228 |
-
|
| 1229 |
-
|
| 1230 |
-
|
| 1231 |
-
|
| 1232 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1233 |
|
| 1234 |
-
|
| 1235 |
-
async def get_validation_statistics():
|
| 1236 |
-
"""Get comprehensive validation statistics"""
|
| 1237 |
-
try:
|
| 1238 |
-
stats = get_validation_stats()
|
| 1239 |
-
|
| 1240 |
-
if not stats:
|
| 1241 |
-
return {
|
| 1242 |
-
'statistics_available': False,
|
| 1243 |
-
'message': 'No validation statistics available yet',
|
| 1244 |
-
'timestamp': datetime.now().isoformat()
|
| 1245 |
-
}
|
| 1246 |
-
|
| 1247 |
-
enhanced_stats = {
|
| 1248 |
-
'statistics_available': True,
|
| 1249 |
-
'last_updated': stats.get('last_updated'),
|
| 1250 |
-
'overall_metrics': {
|
| 1251 |
-
'total_validations': stats.get('total_validations', 0),
|
| 1252 |
-
'total_articles_processed': stats.get('total_articles', 0),
|
| 1253 |
-
'overall_success_rate': (stats.get('total_valid_articles', 0) /
|
| 1254 |
-
max(stats.get('total_articles', 1), 1)),
|
| 1255 |
-
'average_quality_score': stats.get('average_quality_score', 0.0)
|
| 1256 |
-
},
|
| 1257 |
-
'source_breakdown': stats.get('source_statistics', {}),
|
| 1258 |
-
'recent_performance': {
|
| 1259 |
-
'validation_history': stats.get('validation_history', [])[-10:],
|
| 1260 |
-
'quality_trends': stats.get('quality_trends', [])[-10:]
|
| 1261 |
-
},
|
| 1262 |
-
'timestamp': datetime.now().isoformat()
|
| 1263 |
-
}
|
| 1264 |
-
|
| 1265 |
-
return enhanced_stats
|
| 1266 |
-
|
| 1267 |
-
except Exception as e:
|
| 1268 |
-
logger.error(f"Failed to get validation statistics: {e}")
|
| 1269 |
-
raise HTTPException(
|
| 1270 |
-
status_code=500,
|
| 1271 |
-
detail=f"Failed to retrieve validation statistics: {str(e)}"
|
| 1272 |
-
)
|
| 1273 |
|
| 1274 |
-
@app.get("/validation/quality-report")
|
| 1275 |
-
async def get_quality_report():
|
| 1276 |
-
"""Get comprehensive data quality report"""
|
| 1277 |
-
try:
|
| 1278 |
-
report = generate_quality_report()
|
| 1279 |
-
|
| 1280 |
-
if 'error' in report:
|
| 1281 |
-
raise HTTPException(
|
| 1282 |
-
status_code=404,
|
| 1283 |
-
detail=report['error']
|
| 1284 |
-
)
|
| 1285 |
-
|
| 1286 |
-
return report
|
| 1287 |
-
|
| 1288 |
-
except HTTPException:
|
| 1289 |
-
raise
|
| 1290 |
except Exception as e:
|
| 1291 |
-
logger.error(f"
|
| 1292 |
raise HTTPException(
|
| 1293 |
status_code=500,
|
| 1294 |
-
detail=f"Failed to
|
| 1295 |
-
)
|
| 1296 |
-
|
| 1297 |
-
@app.get("/validation/health")
|
| 1298 |
-
async def get_validation_health():
|
| 1299 |
-
"""Get validation system health status"""
|
| 1300 |
-
try:
|
| 1301 |
-
stats = get_validation_stats()
|
| 1302 |
-
|
| 1303 |
-
health_indicators = {
|
| 1304 |
-
'validation_system_active': True,
|
| 1305 |
-
'statistics_available': bool(stats),
|
| 1306 |
-
'recent_activity': False,
|
| 1307 |
-
'quality_status': 'unknown'
|
| 1308 |
-
}
|
| 1309 |
-
|
| 1310 |
-
if stats:
|
| 1311 |
-
last_updated = stats.get('last_updated')
|
| 1312 |
-
if last_updated:
|
| 1313 |
-
try:
|
| 1314 |
-
last_update_time = datetime.fromisoformat(last_updated)
|
| 1315 |
-
hours_since_update = (datetime.now() - last_update_time).total_seconds() / 3600
|
| 1316 |
-
health_indicators['recent_activity'] = hours_since_update <= 24
|
| 1317 |
-
health_indicators['hours_since_last_validation'] = hours_since_update
|
| 1318 |
-
except:
|
| 1319 |
-
pass
|
| 1320 |
-
|
| 1321 |
-
avg_quality = stats.get('average_quality_score', 0)
|
| 1322 |
-
success_rate = stats.get('total_valid_articles', 0) / max(stats.get('total_articles', 1), 1)
|
| 1323 |
-
|
| 1324 |
-
if avg_quality >= 0.7 and success_rate >= 0.8:
|
| 1325 |
-
health_indicators['quality_status'] = 'excellent'
|
| 1326 |
-
elif avg_quality >= 0.5 and success_rate >= 0.6:
|
| 1327 |
-
health_indicators['quality_status'] = 'good'
|
| 1328 |
-
elif avg_quality >= 0.3 and success_rate >= 0.4:
|
| 1329 |
-
health_indicators['quality_status'] = 'fair'
|
| 1330 |
-
else:
|
| 1331 |
-
health_indicators['quality_status'] = 'poor'
|
| 1332 |
-
|
| 1333 |
-
health_indicators['average_quality_score'] = avg_quality
|
| 1334 |
-
health_indicators['validation_success_rate'] = success_rate
|
| 1335 |
-
|
| 1336 |
-
overall_healthy = (
|
| 1337 |
-
health_indicators['validation_system_active'] and
|
| 1338 |
-
health_indicators['statistics_available'] and
|
| 1339 |
-
health_indicators['quality_status'] not in ['poor', 'unknown']
|
| 1340 |
)
|
| 1341 |
-
|
| 1342 |
-
return {
|
| 1343 |
-
'validation_health': {
|
| 1344 |
-
'overall_status': 'healthy' if overall_healthy else 'degraded',
|
| 1345 |
-
'health_indicators': health_indicators,
|
| 1346 |
-
'last_check': datetime.now().isoformat()
|
| 1347 |
-
}
|
| 1348 |
-
}
|
| 1349 |
-
|
| 1350 |
-
except Exception as e:
|
| 1351 |
-
logger.error(f"Validation health check failed: {e}")
|
| 1352 |
-
return {
|
| 1353 |
-
'validation_health': {
|
| 1354 |
-
'overall_status': 'unhealthy',
|
| 1355 |
-
'error': str(e),
|
| 1356 |
-
'last_check': datetime.now().isoformat()
|
| 1357 |
-
}
|
| 1358 |
-
}
|
| 1359 |
-
|
| 1360 |
-
|
| 1361 |
-
# New monitoring endpoints
|
| 1362 |
-
@app.get("/monitor/metrics/current")
|
| 1363 |
-
async def get_current_metrics():
|
| 1364 |
-
"""Get current real-time metrics"""
|
| 1365 |
-
try:
|
| 1366 |
-
prediction_metrics = prediction_monitor.get_current_metrics()
|
| 1367 |
-
system_metrics = metrics_collector.collect_system_metrics()
|
| 1368 |
-
api_metrics = metrics_collector.collect_api_metrics()
|
| 1369 |
-
|
| 1370 |
-
return {
|
| 1371 |
-
"timestamp": datetime.now().isoformat(),
|
| 1372 |
-
"prediction_metrics": asdict(prediction_metrics),
|
| 1373 |
-
"system_metrics": asdict(system_metrics),
|
| 1374 |
-
"api_metrics": asdict(api_metrics)
|
| 1375 |
-
}
|
| 1376 |
-
except Exception as e:
|
| 1377 |
-
logger.error(f"Failed to get current metrics: {e}")
|
| 1378 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1379 |
-
|
| 1380 |
-
@app.get("/monitor/metrics/historical")
|
| 1381 |
-
async def get_historical_metrics(hours: int = 24):
|
| 1382 |
-
"""Get historical metrics"""
|
| 1383 |
-
try:
|
| 1384 |
-
return {
|
| 1385 |
-
"prediction_metrics": [asdict(m) for m in prediction_monitor.get_historical_metrics(hours)],
|
| 1386 |
-
"aggregated_metrics": metrics_collector.get_aggregated_metrics(hours)
|
| 1387 |
-
}
|
| 1388 |
-
except Exception as e:
|
| 1389 |
-
logger.error(f"Failed to get historical metrics: {e}")
|
| 1390 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1391 |
|
| 1392 |
-
@app.get("/monitor/alerts")
|
| 1393 |
-
async def get_alerts():
|
| 1394 |
-
"""Get active alerts and statistics"""
|
| 1395 |
-
try:
|
| 1396 |
-
return {
|
| 1397 |
-
"active_alerts": [asdict(alert) for alert in alert_system.get_active_alerts()],
|
| 1398 |
-
"alert_statistics": alert_system.get_alert_statistics()
|
| 1399 |
-
}
|
| 1400 |
-
except Exception as e:
|
| 1401 |
-
logger.error(f"Failed to get alerts: {e}")
|
| 1402 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1403 |
|
| 1404 |
-
|
| 1405 |
-
async def get_monitoring_health():
|
| 1406 |
-
"""Get monitoring system health"""
|
| 1407 |
-
try:
|
| 1408 |
-
dashboard_data = metrics_collector.get_real_time_dashboard_data()
|
| 1409 |
-
confidence_analysis = prediction_monitor.get_confidence_analysis()
|
| 1410 |
-
|
| 1411 |
-
return {
|
| 1412 |
-
"monitoring_status": "active",
|
| 1413 |
-
"dashboard_data": dashboard_data,
|
| 1414 |
-
"confidence_analysis": confidence_analysis,
|
| 1415 |
-
"total_predictions": prediction_monitor.total_predictions
|
| 1416 |
-
}
|
| 1417 |
-
except Exception as e:
|
| 1418 |
-
logger.error(f"Failed to get monitoring health: {e}")
|
| 1419 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1420 |
|
| 1421 |
-
@app.get("/
|
| 1422 |
-
async def
|
| 1423 |
-
"""
|
| 1424 |
-
|
| 1425 |
-
|
| 1426 |
-
|
| 1427 |
-
logger.error(f"Failed to get prediction patterns: {e}")
|
| 1428 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1429 |
-
|
| 1430 |
-
@app.post("/monitor/alerts/{alert_id}/acknowledge")
|
| 1431 |
-
async def acknowledge_alert(alert_id: str):
|
| 1432 |
-
"""Acknowledge an alert"""
|
| 1433 |
-
try:
|
| 1434 |
-
success = alert_system.acknowledge_alert(alert_id, "api_user")
|
| 1435 |
-
if success:
|
| 1436 |
-
return {"message": f"Alert {alert_id} acknowledged"}
|
| 1437 |
-
else:
|
| 1438 |
-
raise HTTPException(status_code=404, detail="Alert not found")
|
| 1439 |
-
except HTTPException:
|
| 1440 |
-
raise
|
| 1441 |
-
except Exception as e:
|
| 1442 |
-
logger.error(f"Failed to acknowledge alert: {e}")
|
| 1443 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1444 |
-
|
| 1445 |
-
@app.post("/monitor/alerts/{alert_id}/resolve")
|
| 1446 |
-
async def resolve_alert(alert_id: str, resolution_note: str = ""):
|
| 1447 |
-
"""Resolve an alert"""
|
| 1448 |
-
try:
|
| 1449 |
-
success = alert_system.resolve_alert(alert_id, "api_user", resolution_note)
|
| 1450 |
-
if success:
|
| 1451 |
-
return {"message": f"Alert {alert_id} resolved"}
|
| 1452 |
-
else:
|
| 1453 |
-
raise HTTPException(status_code=404, detail="Alert not found")
|
| 1454 |
-
except HTTPException:
|
| 1455 |
-
raise
|
| 1456 |
-
except Exception as e:
|
| 1457 |
-
logger.error(f"Failed to resolve alert: {e}")
|
| 1458 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1459 |
-
|
| 1460 |
-
|
| 1461 |
-
@app.get("/automation/status")
|
| 1462 |
-
async def get_automation_status():
|
| 1463 |
-
"""Get automation system status"""
|
| 1464 |
-
try:
|
| 1465 |
-
if automation_manager is None:
|
| 1466 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
| 1467 |
-
|
| 1468 |
-
# Get automation status
|
| 1469 |
-
automation_status = automation_manager.get_automation_status()
|
| 1470 |
-
|
| 1471 |
-
# Get drift monitoring status
|
| 1472 |
-
drift_status = automation_manager.drift_monitor.get_automation_status()
|
| 1473 |
-
|
| 1474 |
-
return {
|
| 1475 |
-
"timestamp": datetime.now().isoformat(),
|
| 1476 |
-
"automation_system": automation_status,
|
| 1477 |
-
"drift_monitoring": drift_status,
|
| 1478 |
-
"system_health": "active" if automation_manager.retraining_active else "inactive"
|
| 1479 |
-
}
|
| 1480 |
-
|
| 1481 |
-
except Exception as e:
|
| 1482 |
-
logger.error(f"Failed to get automation status: {e}")
|
| 1483 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1484 |
-
|
| 1485 |
-
@app.get("/automation/triggers/check")
|
| 1486 |
-
async def check_retraining_triggers():
|
| 1487 |
-
"""Check current retraining triggers"""
|
| 1488 |
-
try:
|
| 1489 |
-
if automation_manager is None:
|
| 1490 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
| 1491 |
-
|
| 1492 |
-
trigger_results = automation_manager.drift_monitor.check_retraining_triggers()
|
| 1493 |
-
|
| 1494 |
-
return {
|
| 1495 |
-
"timestamp": datetime.now().isoformat(),
|
| 1496 |
-
"trigger_evaluation": trigger_results,
|
| 1497 |
-
"recommendation": "Retraining recommended" if trigger_results.get('should_retrain') else "No retraining needed"
|
| 1498 |
-
}
|
| 1499 |
-
|
| 1500 |
-
except Exception as e:
|
| 1501 |
-
logger.error(f"Failed to check triggers: {e}")
|
| 1502 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1503 |
-
|
| 1504 |
-
@app.post("/automation/retrain/trigger")
|
| 1505 |
-
async def trigger_manual_retraining(reason: str = "manual_api_trigger"):
|
| 1506 |
-
"""Manually trigger retraining"""
|
| 1507 |
try:
|
| 1508 |
-
if
|
| 1509 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
| 1510 |
-
|
| 1511 |
-
result = automation_manager.trigger_manual_retraining(reason)
|
| 1512 |
-
|
| 1513 |
-
if result['success']:
|
| 1514 |
return {
|
| 1515 |
-
"
|
| 1516 |
-
"
|
| 1517 |
-
"
|
|
|
|
| 1518 |
}
|
| 1519 |
-
else:
|
| 1520 |
-
raise HTTPException(status_code=500, detail=result.get('error', 'Unknown error'))
|
| 1521 |
-
|
| 1522 |
-
except HTTPException:
|
| 1523 |
-
raise
|
| 1524 |
-
except Exception as e:
|
| 1525 |
-
logger.error(f"Failed to trigger retraining: {e}")
|
| 1526 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1527 |
-
|
| 1528 |
-
@app.get("/automation/queue")
|
| 1529 |
-
async def get_retraining_queue():
|
| 1530 |
-
"""Get current retraining queue"""
|
| 1531 |
-
try:
|
| 1532 |
-
if automation_manager is None:
|
| 1533 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
| 1534 |
-
|
| 1535 |
-
queue = automation_manager.load_retraining_queue()
|
| 1536 |
-
recent_logs = automation_manager.get_recent_automation_logs(hours=24)
|
| 1537 |
-
|
| 1538 |
-
return {
|
| 1539 |
-
"timestamp": datetime.now().isoformat(),
|
| 1540 |
-
"queued_jobs": queue,
|
| 1541 |
-
"recent_activity": recent_logs,
|
| 1542 |
-
"queue_length": len(queue)
|
| 1543 |
-
}
|
| 1544 |
-
|
| 1545 |
-
except Exception as e:
|
| 1546 |
-
logger.error(f"Failed to get retraining queue: {e}")
|
| 1547 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1548 |
|
| 1549 |
-
|
| 1550 |
-
|
| 1551 |
-
|
| 1552 |
-
|
| 1553 |
-
|
| 1554 |
-
|
| 1555 |
-
|
| 1556 |
-
|
| 1557 |
-
|
| 1558 |
-
|
| 1559 |
-
|
| 1560 |
-
# Get current drift status
|
| 1561 |
-
drift_status = automation_manager.drift_monitor.get_automation_status()
|
| 1562 |
-
|
| 1563 |
-
return {
|
| 1564 |
-
"timestamp": datetime.now().isoformat(),
|
| 1565 |
-
"drift_monitoring_active": True,
|
| 1566 |
-
"recent_drift_checks": drift_checks[-10:], # Last 10 checks
|
| 1567 |
-
"drift_status": drift_status
|
| 1568 |
}
|
| 1569 |
-
|
| 1570 |
-
except Exception as e:
|
| 1571 |
-
logger.error(f"Failed to get drift status: {e}")
|
| 1572 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1573 |
|
| 1574 |
-
|
| 1575 |
-
|
| 1576 |
-
|
| 1577 |
-
|
| 1578 |
-
if automation_manager is None:
|
| 1579 |
-
raise HTTPException(status_code=503, detail="Automation system not available")
|
| 1580 |
-
|
| 1581 |
-
# Update settings
|
| 1582 |
-
automation_manager.automation_config.update(settings)
|
| 1583 |
-
automation_manager.save_automation_config()
|
| 1584 |
-
|
| 1585 |
-
return {
|
| 1586 |
-
"message": "Automation settings updated",
|
| 1587 |
-
"timestamp": datetime.now().isoformat(),
|
| 1588 |
-
"updated_settings": settings
|
| 1589 |
-
}
|
| 1590 |
-
|
| 1591 |
-
except Exception as e:
|
| 1592 |
-
logger.error(f"Failed to update automation settings: {e}")
|
| 1593 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1594 |
-
|
| 1595 |
-
|
| 1596 |
-
# Deployment endpoints
|
| 1597 |
-
@app.get("/deployment/status")
|
| 1598 |
-
async def get_deployment_status():
|
| 1599 |
-
"""Get deployment system status"""
|
| 1600 |
-
try:
|
| 1601 |
-
if not deployment_manager:
|
| 1602 |
-
raise HTTPException(status_code=503, detail="Deployment system not available")
|
| 1603 |
-
|
| 1604 |
-
return deployment_manager.get_deployment_status()
|
| 1605 |
-
|
| 1606 |
-
except Exception as e:
|
| 1607 |
-
logger.error(f"Failed to get deployment status: {e}")
|
| 1608 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1609 |
-
|
| 1610 |
-
@app.post("/deployment/prepare")
|
| 1611 |
-
async def prepare_deployment(target_version: str, strategy: str = "blue_green"):
|
| 1612 |
-
"""Prepare a new deployment"""
|
| 1613 |
-
try:
|
| 1614 |
-
if not deployment_manager:
|
| 1615 |
-
raise HTTPException(status_code=503, detail="Deployment system not available")
|
| 1616 |
-
|
| 1617 |
-
deployment_id = deployment_manager.prepare_deployment(target_version, strategy)
|
| 1618 |
-
|
| 1619 |
-
return {
|
| 1620 |
-
"message": "Deployment prepared",
|
| 1621 |
-
"deployment_id": deployment_id,
|
| 1622 |
-
"target_version": target_version,
|
| 1623 |
-
"strategy": strategy
|
| 1624 |
-
}
|
| 1625 |
-
|
| 1626 |
-
except Exception as e:
|
| 1627 |
-
logger.error(f"Failed to prepare deployment: {e}")
|
| 1628 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1629 |
-
|
| 1630 |
-
@app.post("/deployment/start/{deployment_id}")
|
| 1631 |
-
async def start_deployment(deployment_id: str):
|
| 1632 |
-
"""Start a prepared deployment"""
|
| 1633 |
-
try:
|
| 1634 |
-
if not deployment_manager:
|
| 1635 |
-
raise HTTPException(status_code=503, detail="Deployment system not available")
|
| 1636 |
-
|
| 1637 |
-
success = deployment_manager.start_deployment(deployment_id)
|
| 1638 |
-
|
| 1639 |
-
if success:
|
| 1640 |
-
return {"message": "Deployment started successfully", "deployment_id": deployment_id}
|
| 1641 |
-
else:
|
| 1642 |
-
raise HTTPException(status_code=500, detail="Deployment failed to start")
|
| 1643 |
-
|
| 1644 |
-
except Exception as e:
|
| 1645 |
-
logger.error(f"Failed to start deployment: {e}")
|
| 1646 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1647 |
-
|
| 1648 |
-
@app.post("/deployment/rollback")
|
| 1649 |
-
async def rollback_deployment(reason: str = "Manual rollback"):
|
| 1650 |
-
"""Rollback current deployment"""
|
| 1651 |
-
try:
|
| 1652 |
-
if not deployment_manager:
|
| 1653 |
-
raise HTTPException(status_code=503, detail="Deployment system not available")
|
| 1654 |
-
|
| 1655 |
-
success = deployment_manager.initiate_rollback(reason)
|
| 1656 |
-
|
| 1657 |
-
if success:
|
| 1658 |
-
return {"message": "Rollback initiated successfully", "reason": reason}
|
| 1659 |
-
else:
|
| 1660 |
-
raise HTTPException(status_code=500, detail="Rollback failed")
|
| 1661 |
|
| 1662 |
-
|
| 1663 |
-
|
| 1664 |
-
|
| 1665 |
-
|
| 1666 |
-
|
| 1667 |
-
async def get_traffic_status():
|
| 1668 |
-
"""Get traffic routing status"""
|
| 1669 |
-
try:
|
| 1670 |
-
if not traffic_router:
|
| 1671 |
-
raise HTTPException(status_code=503, detail="Traffic router not available")
|
| 1672 |
-
|
| 1673 |
-
return traffic_router.get_routing_status()
|
| 1674 |
-
|
| 1675 |
-
except Exception as e:
|
| 1676 |
-
logger.error(f"Failed to get traffic status: {e}")
|
| 1677 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1678 |
-
|
| 1679 |
-
@app.post("/deployment/traffic/weights")
|
| 1680 |
-
async def set_traffic_weights(blue_weight: int, green_weight: int):
|
| 1681 |
-
"""Set traffic routing weights"""
|
| 1682 |
-
try:
|
| 1683 |
-
if not traffic_router:
|
| 1684 |
-
raise HTTPException(status_code=503, detail="Traffic router not available")
|
| 1685 |
-
|
| 1686 |
-
success = traffic_router.set_routing_weights(blue_weight, green_weight)
|
| 1687 |
-
|
| 1688 |
-
if success:
|
| 1689 |
-
return {
|
| 1690 |
-
"message": "Traffic weights updated",
|
| 1691 |
-
"blue_weight": blue_weight,
|
| 1692 |
-
"green_weight": green_weight
|
| 1693 |
}
|
| 1694 |
-
else:
|
| 1695 |
-
raise HTTPException(status_code=500, detail="Failed to update traffic weights")
|
| 1696 |
-
|
| 1697 |
-
except Exception as e:
|
| 1698 |
-
logger.error(f"Failed to set traffic weights: {e}")
|
| 1699 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1700 |
|
| 1701 |
-
|
| 1702 |
-
async def get_deployment_performance(window_minutes: int = 60):
|
| 1703 |
-
"""Get deployment performance comparison"""
|
| 1704 |
-
try:
|
| 1705 |
-
if not traffic_router:
|
| 1706 |
-
raise HTTPException(status_code=503, detail="Traffic router not available")
|
| 1707 |
-
|
| 1708 |
-
return traffic_router.compare_environment_performance(window_minutes)
|
| 1709 |
-
|
| 1710 |
-
except Exception as e:
|
| 1711 |
-
logger.error(f"Failed to get deployment performance: {e}")
|
| 1712 |
-
raise HTTPException(status_code=500, detail=str(e))
|
| 1713 |
|
| 1714 |
-
@app.get("/registry/models")
|
| 1715 |
-
async def list_registry_models(status: str = None, limit: int = 10):
|
| 1716 |
-
"""List models in registry"""
|
| 1717 |
-
try:
|
| 1718 |
-
if not model_registry:
|
| 1719 |
-
raise HTTPException(status_code=503, detail="Model registry not available")
|
| 1720 |
-
|
| 1721 |
-
models = model_registry.list_models(status=status, limit=limit)
|
| 1722 |
-
return {"models": [asdict(model) for model in models]}
|
| 1723 |
-
|
| 1724 |
except Exception as e:
|
| 1725 |
-
logger.error(f"
|
| 1726 |
-
raise HTTPException(
|
| 1727 |
-
|
| 1728 |
-
|
| 1729 |
-
|
| 1730 |
-
"""Get model registry statistics"""
|
| 1731 |
-
try:
|
| 1732 |
-
if not model_registry:
|
| 1733 |
-
raise HTTPException(status_code=503, detail="Model registry not available")
|
| 1734 |
-
|
| 1735 |
-
return model_registry.get_registry_stats()
|
| 1736 |
-
|
| 1737 |
-
except Exception as e:
|
| 1738 |
-
logger.error(f"Failed to get registry stats: {e}")
|
| 1739 |
-
raise HTTPException(status_code=500, detail=str(e))
|
|
|
|
| 1 |
+
# Enhanced app/fastapi_server.py with LightGBM ensemble support
|
| 2 |
+
|
| 3 |
import json
|
| 4 |
import time
|
| 5 |
import joblib
|
|
|
|
| 26 |
from fastapi.security import HTTPBearer, HTTPAuthorizationCredentials
|
| 27 |
from fastapi import FastAPI, HTTPException, Depends, Request, BackgroundTasks, status
|
| 28 |
|
| 29 |
+
# LightGBM availability check
|
| 30 |
+
try:
|
| 31 |
+
import lightgbm as lgb
|
| 32 |
+
LIGHTGBM_AVAILABLE = True
|
| 33 |
+
except ImportError:
|
| 34 |
+
LIGHTGBM_AVAILABLE = False
|
| 35 |
+
|
| 36 |
from data.data_validator import (
|
| 37 |
DataValidationPipeline, validate_text, validate_articles_list,
|
| 38 |
get_validation_stats, generate_quality_report
|
|
|
|
| 48 |
from deployment.model_registry import ModelRegistry
|
| 49 |
from deployment.blue_green_manager import BlueGreenDeploymentManager
|
| 50 |
|
| 51 |
+
# Import the path manager
|
|
|
|
| 52 |
try:
|
| 53 |
from path_config import path_manager
|
| 54 |
except ImportError:
|
|
|
|
| 55 |
import sys
|
| 56 |
import os
|
| 57 |
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
|
|
|
|
| 60 |
# Configure logging with fallback for permission issues
|
| 61 |
def setup_logging():
|
| 62 |
"""Setup logging with fallback for environments with restricted file access"""
|
| 63 |
+
handlers = [logging.StreamHandler()]
|
| 64 |
|
| 65 |
try:
|
|
|
|
| 66 |
log_file_path = path_manager.get_logs_path('fastapi_server.log')
|
| 67 |
log_file_path.parent.mkdir(parents=True, exist_ok=True)
|
| 68 |
|
|
|
|
| 69 |
test_handler = logging.FileHandler(log_file_path)
|
| 70 |
test_handler.close()
|
| 71 |
|
|
|
|
| 72 |
handlers.append(logging.FileHandler(log_file_path))
|
| 73 |
+
print(f"Logging to file: {log_file_path}")
|
| 74 |
|
| 75 |
except (PermissionError, OSError) as e:
|
|
|
|
| 76 |
print(f"Cannot create log file, using console only: {e}")
|
| 77 |
|
|
|
|
| 78 |
try:
|
| 79 |
import tempfile
|
| 80 |
temp_log = tempfile.NamedTemporaryFile(mode='w', suffix='.log', delete=False, prefix='fastapi_')
|
|
|
|
| 86 |
|
| 87 |
return handlers
|
| 88 |
|
| 89 |
+
# Setup logging
|
| 90 |
logging.basicConfig(
|
| 91 |
level=logging.INFO,
|
| 92 |
format='%(asctime)s - %(levelname)s - %(message)s',
|
|
|
|
| 94 |
)
|
| 95 |
logger = logging.getLogger(__name__)
|
| 96 |
|
| 97 |
+
# Log environment info
|
| 98 |
try:
|
| 99 |
path_manager.log_environment_info()
|
| 100 |
except Exception as e:
|
|
|
|
| 107 |
rate_limit_storage = defaultdict(list)
|
| 108 |
|
| 109 |
|
| 110 |
+
class EnhancedModelManager:
|
| 111 |
+
"""Enhanced model manager with LightGBM ensemble support"""
|
| 112 |
|
| 113 |
def __init__(self):
|
| 114 |
self.model = None
|
| 115 |
self.vectorizer = None
|
| 116 |
self.pipeline = None
|
| 117 |
+
self.ensemble = None
|
| 118 |
self.model_metadata = {}
|
| 119 |
+
self.ensemble_metadata = {}
|
| 120 |
self.last_health_check = None
|
| 121 |
self.health_status = "unknown"
|
| 122 |
+
self.model_type = "unknown"
|
| 123 |
+
self.is_ensemble = False
|
| 124 |
self.load_model()
|
| 125 |
|
| 126 |
def load_model(self):
|
| 127 |
+
"""Load model with comprehensive error handling and ensemble support"""
|
| 128 |
try:
|
| 129 |
+
logger.info("Loading ML model with ensemble support...")
|
| 130 |
|
| 131 |
# Initialize all to None first
|
| 132 |
self.model = None
|
| 133 |
self.vectorizer = None
|
| 134 |
self.pipeline = None
|
| 135 |
+
self.ensemble = None
|
| 136 |
+
self.is_ensemble = False
|
| 137 |
|
| 138 |
+
# Check for ensemble model first
|
| 139 |
+
ensemble_path = Path("/tmp/ensemble.pkl")
|
| 140 |
+
ensemble_metadata_path = Path("/tmp/ensemble_metadata.json")
|
| 141 |
|
| 142 |
+
if ensemble_path.exists():
|
| 143 |
try:
|
| 144 |
+
self.ensemble = joblib.load(ensemble_path)
|
| 145 |
+
self.pipeline = self.ensemble # Use ensemble as pipeline
|
| 146 |
+
self.model_type = "ensemble"
|
| 147 |
+
self.is_ensemble = True
|
| 148 |
+
|
| 149 |
+
# Load ensemble metadata
|
| 150 |
+
if ensemble_metadata_path.exists():
|
| 151 |
+
with open(ensemble_metadata_path, 'r') as f:
|
| 152 |
+
self.ensemble_metadata = json.load(f)
|
| 153 |
+
logger.info(f"Loaded ensemble metadata: {self.ensemble_metadata.get('ensemble_type', 'unknown')}")
|
| 154 |
+
|
| 155 |
+
logger.info("Loaded ensemble model successfully")
|
| 156 |
+
logger.info(f"Ensemble type: {self.ensemble_metadata.get('ensemble_type', 'voting_classifier')}")
|
| 157 |
+
logger.info(f"Component models: {self.ensemble_metadata.get('component_models', [])}")
|
| 158 |
+
|
| 159 |
except Exception as e:
|
| 160 |
+
logger.warning(f"Failed to load ensemble model: {e}, falling back to individual pipeline")
|
| 161 |
+
self.ensemble = None
|
| 162 |
+
|
| 163 |
+
# Try to load pipeline if ensemble not available
|
| 164 |
+
if self.pipeline is None:
|
| 165 |
+
pipeline_path = path_manager.get_pipeline_path()
|
| 166 |
+
logger.info(f"Checking for pipeline at: {pipeline_path}")
|
| 167 |
+
|
| 168 |
+
if pipeline_path.exists():
|
| 169 |
+
try:
|
| 170 |
+
self.pipeline = joblib.load(pipeline_path)
|
| 171 |
+
# Extract components from pipeline
|
| 172 |
+
if hasattr(self.pipeline, 'named_steps'):
|
| 173 |
+
self.model = self.pipeline.named_steps.get('model')
|
| 174 |
+
self.vectorizer = (self.pipeline.named_steps.get('vectorizer') or
|
| 175 |
+
self.pipeline.named_steps.get('vectorize'))
|
| 176 |
+
|
| 177 |
+
# Check if this is actually an ensemble pipeline
|
| 178 |
+
if 'ensemble' in self.pipeline.named_steps:
|
| 179 |
+
self.model_type = "ensemble_pipeline"
|
| 180 |
+
self.is_ensemble = True
|
| 181 |
+
logger.info("Detected ensemble within pipeline")
|
| 182 |
+
|
| 183 |
+
logger.info("Loaded model pipeline successfully")
|
| 184 |
+
logger.info(f"Pipeline steps: {list(self.pipeline.named_steps.keys()) if hasattr(self.pipeline, 'named_steps') else 'No named_steps'}")
|
| 185 |
+
except Exception as e:
|
| 186 |
+
logger.warning(f"Failed to load pipeline: {e}, falling back to individual components")
|
| 187 |
+
self.pipeline = None
|
| 188 |
|
| 189 |
+
# If pipeline loading failed, load individual components
|
| 190 |
if self.pipeline is None:
|
| 191 |
model_path = path_manager.get_model_file_path()
|
| 192 |
vectorizer_path = path_manager.get_vectorizer_path()
|
|
|
|
| 198 |
try:
|
| 199 |
self.model = joblib.load(model_path)
|
| 200 |
self.vectorizer = joblib.load(vectorizer_path)
|
| 201 |
+
self.model_type = "individual_components"
|
| 202 |
logger.info("Loaded model components successfully")
|
| 203 |
except Exception as e:
|
| 204 |
logger.error(f"Failed to load individual components: {e}")
|
| 205 |
raise e
|
| 206 |
else:
|
| 207 |
+
raise FileNotFoundError(f"No model files found")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 208 |
|
| 209 |
# Load metadata
|
| 210 |
metadata_path = path_manager.get_metadata_path()
|
| 211 |
if metadata_path.exists():
|
| 212 |
with open(metadata_path, 'r') as f:
|
| 213 |
self.model_metadata = json.load(f)
|
| 214 |
+
|
| 215 |
+
# Update model type and ensemble status from metadata
|
| 216 |
+
if self.model_metadata.get('is_ensemble', False):
|
| 217 |
+
self.is_ensemble = True
|
| 218 |
+
if not self.model_type.startswith('ensemble'):
|
| 219 |
+
self.model_type = "ensemble_from_metadata"
|
| 220 |
+
|
| 221 |
logger.info(f"Loaded model metadata: {self.model_metadata.get('model_version', 'Unknown')}")
|
| 222 |
+
logger.info(f"Model type from metadata: {self.model_metadata.get('model_type', 'unknown')}")
|
| 223 |
+
logger.info(f"Is ensemble: {self.is_ensemble}")
|
| 224 |
+
|
| 225 |
+
if self.is_ensemble and 'ensemble_details' in self.model_metadata:
|
| 226 |
+
ensemble_details = self.model_metadata['ensemble_details']
|
| 227 |
+
logger.info(f"Ensemble details: {ensemble_details}")
|
| 228 |
else:
|
| 229 |
logger.warning(f"Metadata file not found at: {metadata_path}")
|
| 230 |
self.model_metadata = {"model_version": "unknown"}
|
| 231 |
|
| 232 |
+
# Verify we have what we need for predictions
|
| 233 |
+
if self.pipeline is None and (self.model is None or self.vectorizer is None):
|
| 234 |
+
raise ValueError("Neither complete pipeline nor individual model components are available")
|
| 235 |
+
|
| 236 |
self.health_status = "healthy"
|
| 237 |
self.last_health_check = datetime.now()
|
| 238 |
|
| 239 |
# Log what was successfully loaded
|
| 240 |
logger.info(f"Model loading summary:")
|
| 241 |
logger.info(f" Pipeline available: {self.pipeline is not None}")
|
| 242 |
+
logger.info(f" Individual model available: {self.model is not None}")
|
| 243 |
logger.info(f" Vectorizer available: {self.vectorizer is not None}")
|
| 244 |
+
logger.info(f" Ensemble available: {self.ensemble is not None}")
|
| 245 |
+
logger.info(f" Model type: {self.model_type}")
|
| 246 |
+
logger.info(f" Is ensemble: {self.is_ensemble}")
|
| 247 |
|
| 248 |
except Exception as e:
|
| 249 |
logger.error(f"Failed to load model: {e}")
|
|
|
|
| 252 |
self.model = None
|
| 253 |
self.vectorizer = None
|
| 254 |
self.pipeline = None
|
| 255 |
+
self.ensemble = None
|
| 256 |
|
| 257 |
def predict(self, text: str) -> tuple[str, float]:
|
| 258 |
+
"""Make prediction with enhanced ensemble support"""
|
| 259 |
try:
|
| 260 |
if self.pipeline:
|
| 261 |
+
# Use pipeline for prediction (works for both ensemble and individual models)
|
| 262 |
prediction = self.pipeline.predict([text])[0]
|
| 263 |
probabilities = self.pipeline.predict_proba([text])[0]
|
| 264 |
+
|
| 265 |
+
if self.is_ensemble:
|
| 266 |
+
logger.debug("Used ensemble pipeline for prediction")
|
| 267 |
+
else:
|
| 268 |
+
logger.debug("Used individual model pipeline for prediction")
|
| 269 |
+
|
| 270 |
elif self.model and self.vectorizer:
|
| 271 |
# Use individual components
|
| 272 |
X = self.vectorizer.transform([text])
|
|
|
|
| 293 |
)
|
| 294 |
|
| 295 |
def health_check(self) -> Dict[str, Any]:
|
| 296 |
+
"""Perform health check with ensemble information"""
|
| 297 |
try:
|
| 298 |
# Test prediction with sample text
|
| 299 |
test_text = "This is a test article for health check purposes."
|
|
|
|
| 302 |
self.health_status = "healthy"
|
| 303 |
self.last_health_check = datetime.now()
|
| 304 |
|
| 305 |
+
health_info = {
|
| 306 |
"status": "healthy",
|
| 307 |
"last_check": self.last_health_check.isoformat(),
|
| 308 |
"model_available": self.model is not None,
|
| 309 |
"vectorizer_available": self.vectorizer is not None,
|
| 310 |
"pipeline_available": self.pipeline is not None,
|
| 311 |
+
"ensemble_available": self.ensemble is not None,
|
| 312 |
+
"model_type": self.model_type,
|
| 313 |
+
"is_ensemble": self.is_ensemble,
|
| 314 |
"test_prediction": {"label": label, "confidence": confidence},
|
| 315 |
"environment": path_manager.environment,
|
| 316 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE,
|
| 317 |
+
"model_paths": {
|
| 318 |
+
"pipeline": str(path_manager.get_pipeline_path()),
|
| 319 |
+
"ensemble": "/tmp/ensemble.pkl",
|
| 320 |
+
"model": str(path_manager.get_model_file_path()),
|
| 321 |
+
"vectorizer": str(path_manager.get_vectorizer_path())
|
| 322 |
+
},
|
| 323 |
"file_exists": {
|
| 324 |
+
"pipeline": path_manager.get_pipeline_path().exists(),
|
| 325 |
+
"ensemble": Path("/tmp/ensemble.pkl").exists(),
|
| 326 |
"model": path_manager.get_model_file_path().exists(),
|
| 327 |
"vectorizer": path_manager.get_vectorizer_path().exists(),
|
| 328 |
+
"metadata": path_manager.get_metadata_path().exists(),
|
| 329 |
+
"ensemble_metadata": Path("/tmp/ensemble_metadata.json").exists()
|
| 330 |
}
|
| 331 |
}
|
| 332 |
|
| 333 |
+
# Add ensemble-specific information
|
| 334 |
+
if self.is_ensemble:
|
| 335 |
+
health_info["ensemble_info"] = {
|
| 336 |
+
"ensemble_type": self.ensemble_metadata.get('ensemble_type', 'unknown'),
|
| 337 |
+
"component_models": self.ensemble_metadata.get('component_models', []),
|
| 338 |
+
"voting_type": self.model_metadata.get('ensemble_details', {}).get('voting_type', 'unknown')
|
| 339 |
+
}
|
| 340 |
+
|
| 341 |
+
return health_info
|
| 342 |
+
|
| 343 |
except Exception as e:
|
| 344 |
self.health_status = "unhealthy"
|
| 345 |
self.last_health_check = datetime.now()
|
|
|
|
| 351 |
"model_available": self.model is not None,
|
| 352 |
"vectorizer_available": self.vectorizer is not None,
|
| 353 |
"pipeline_available": self.pipeline is not None,
|
| 354 |
+
"ensemble_available": self.ensemble is not None,
|
| 355 |
+
"model_type": self.model_type,
|
| 356 |
+
"is_ensemble": self.is_ensemble,
|
| 357 |
"environment": path_manager.environment,
|
| 358 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 359 |
}
|
| 360 |
|
| 361 |
|
| 362 |
+
# Background task functions remain the same...
|
| 363 |
async def log_prediction(text: str, prediction: str, confidence: float, client_ip: str, processing_time: float):
|
| 364 |
"""Log prediction details with error handling for file access"""
|
| 365 |
try:
|
|
|
|
| 370 |
"prediction": prediction,
|
| 371 |
"confidence": confidence,
|
| 372 |
"processing_time": processing_time,
|
| 373 |
+
"text_hash": hashlib.md5(text.encode()).hexdigest(),
|
| 374 |
+
"model_type": model_manager.model_type,
|
| 375 |
+
"is_ensemble": model_manager.is_ensemble
|
| 376 |
}
|
| 377 |
|
| 378 |
# Try to save to log file
|
|
|
|
| 401 |
await f.write(json.dumps(logs, indent=2))
|
| 402 |
|
| 403 |
except (PermissionError, OSError) as e:
|
|
|
|
| 404 |
logger.warning(f"Cannot write prediction log to file: {e}")
|
| 405 |
logger.info(f"Prediction logged: {json.dumps(log_entry)}")
|
| 406 |
|
|
|
|
| 408 |
logger.error(f"Failed to log prediction: {e}")
|
| 409 |
|
| 410 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 411 |
# Global variables
|
| 412 |
+
model_manager = EnhancedModelManager()
|
| 413 |
|
| 414 |
# Initialize automation manager
|
| 415 |
automation_manager = None
|
|
|
|
| 419 |
traffic_router = None
|
| 420 |
model_registry = None
|
| 421 |
|
|
|
|
| 422 |
@asynccontextmanager
|
| 423 |
async def lifespan(app: FastAPI):
|
| 424 |
+
"""Manage application lifespan with enhanced model support"""
|
| 425 |
global deployment_manager, traffic_router, model_registry
|
| 426 |
|
| 427 |
+
logger.info("Starting Enhanced FastAPI application with ensemble support...")
|
| 428 |
|
| 429 |
# Startup tasks
|
| 430 |
model_manager.load_model()
|
| 431 |
|
| 432 |
+
# Log model information
|
| 433 |
+
logger.info(f"Model loaded: {model_manager.model_type}")
|
| 434 |
+
logger.info(f"Ensemble support: {model_manager.is_ensemble}")
|
| 435 |
+
logger.info(f"LightGBM available: {LIGHTGBM_AVAILABLE}")
|
| 436 |
+
|
| 437 |
# Initialize deployment components
|
| 438 |
try:
|
| 439 |
deployment_manager = BlueGreenDeploymentManager()
|
|
|
|
| 443 |
except Exception as e:
|
| 444 |
logger.error(f"Failed to initialize deployment system: {e}")
|
| 445 |
|
| 446 |
+
# Initialize monitoring
|
| 447 |
+
try:
|
| 448 |
+
prediction_monitor = PredictionMonitor(base_dir=Path("/tmp"))
|
| 449 |
+
metrics_collector = MetricsCollector(base_dir=Path("/tmp"))
|
| 450 |
+
alert_system = AlertSystem(base_dir=Path("/tmp"))
|
| 451 |
+
|
| 452 |
+
prediction_monitor.start_monitoring()
|
| 453 |
+
alert_system.add_notification_handler("console", console_notification_handler)
|
| 454 |
+
logger.info("Monitoring system initialized")
|
| 455 |
+
except Exception as e:
|
| 456 |
+
logger.error(f"Failed to initialize monitoring: {e}")
|
| 457 |
|
| 458 |
yield
|
| 459 |
|
| 460 |
# Shutdown tasks
|
| 461 |
+
logger.info("Shutting down Enhanced FastAPI application...")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 462 |
|
| 463 |
# Create FastAPI app
|
| 464 |
app = FastAPI(
|
| 465 |
+
title="Enhanced Fake News Detection API with Ensemble Support",
|
| 466 |
+
description="Production-ready API for fake news detection with LightGBM ensemble support and comprehensive monitoring",
|
| 467 |
+
version="2.1.0",
|
| 468 |
docs_url="/docs",
|
| 469 |
redoc_url="/redoc",
|
| 470 |
lifespan=lifespan
|
| 471 |
)
|
| 472 |
|
| 473 |
+
# Add middleware (same as before)
|
| 474 |
app.add_middleware(
|
| 475 |
CORSMiddleware,
|
| 476 |
+
allow_origins=["*"],
|
| 477 |
allow_credentials=True,
|
| 478 |
allow_methods=["*"],
|
| 479 |
allow_headers=["*"],
|
|
|
|
| 481 |
|
| 482 |
app.add_middleware(
|
| 483 |
TrustedHostMiddleware,
|
| 484 |
+
allowed_hosts=["*"]
|
| 485 |
)
|
| 486 |
|
| 487 |
+
# Enhanced prediction response model
|
| 488 |
+
class EnhancedPredictionResponse(BaseModel):
|
| 489 |
+
prediction: str = Field(..., description="Prediction result: 'Real' or 'Fake'")
|
| 490 |
+
confidence: float = Field(..., ge=0.0, le=1.0, description="Confidence score between 0 and 1")
|
| 491 |
+
model_version: str = Field(..., description="Version of the model used for prediction")
|
| 492 |
+
model_type: str = Field(..., description="Type of model: individual, ensemble, etc.")
|
| 493 |
+
is_ensemble: bool = Field(..., description="Whether an ensemble model was used")
|
| 494 |
+
ensemble_info: Optional[Dict[str, Any]] = Field(None, description="Ensemble-specific information")
|
| 495 |
+
timestamp: str = Field(..., description="Timestamp of the prediction")
|
| 496 |
+
processing_time: float = Field(..., description="Time taken for processing in seconds")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 497 |
|
| 498 |
+
# Enhanced health response model
|
| 499 |
+
class EnhancedHealthResponse(BaseModel):
|
| 500 |
+
status: str
|
| 501 |
+
timestamp: str
|
| 502 |
+
model_health: Dict[str, Any]
|
| 503 |
+
system_health: Dict[str, Any]
|
| 504 |
+
api_health: Dict[str, Any]
|
| 505 |
+
environment_info: Dict[str, Any]
|
| 506 |
+
ensemble_info: Optional[Dict[str, Any]] = None
|
| 507 |
|
| 508 |
+
# Request models remain the same...
|
| 509 |
class PredictionRequest(BaseModel):
|
| 510 |
text: str = Field(..., min_length=1, max_length=10000,
|
| 511 |
description="Text to analyze for fake news detection")
|
|
|
|
| 514 |
def validate_text(cls, v):
|
| 515 |
if not v or not v.strip():
|
| 516 |
raise ValueError('Text cannot be empty')
|
|
|
|
|
|
|
| 517 |
if len(v.strip()) < 10:
|
| 518 |
raise ValueError('Text must be at least 10 characters long')
|
|
|
|
|
|
|
| 519 |
suspicious_patterns = ['<script', 'javascript:', 'data:']
|
| 520 |
if any(pattern in v.lower() for pattern in suspicious_patterns):
|
| 521 |
raise ValueError('Text contains suspicious content')
|
|
|
|
| 522 |
return v.strip()
|
| 523 |
|
| 524 |
|
| 525 |
+
# Rate limiting and error handlers remain the same...
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
async def rate_limit_check(request: Request):
|
| 527 |
"""Check rate limits"""
|
| 528 |
client_ip = request.client.host
|
|
|
|
| 531 |
# Clean old entries
|
| 532 |
rate_limit_storage[client_ip] = [
|
| 533 |
timestamp for timestamp in rate_limit_storage[client_ip]
|
| 534 |
+
if current_time - timestamp < 3600
|
| 535 |
]
|
| 536 |
|
| 537 |
# Check rate limit (100 requests per hour)
|
|
|
|
| 545 |
rate_limit_storage[client_ip].append(current_time)
|
| 546 |
|
| 547 |
|
|
|
|
| 548 |
@app.middleware("http")
|
| 549 |
async def log_requests(request: Request, call_next):
|
| 550 |
+
"""Log all requests with ensemble information"""
|
| 551 |
start_time = time.time()
|
|
|
|
| 552 |
response = await call_next(request)
|
|
|
|
| 553 |
process_time = time.time() - start_time
|
| 554 |
|
| 555 |
log_data = {
|
|
|
|
| 558 |
"client_ip": request.client.host,
|
| 559 |
"status_code": response.status_code,
|
| 560 |
"process_time": process_time,
|
| 561 |
+
"timestamp": datetime.now().isoformat(),
|
| 562 |
+
"model_type": model_manager.model_type,
|
| 563 |
+
"is_ensemble": model_manager.is_ensemble
|
| 564 |
}
|
| 565 |
|
| 566 |
logger.info(f"Request: {json.dumps(log_data)}")
|
|
|
|
| 567 |
return response
|
| 568 |
|
| 569 |
|
| 570 |
+
# Enhanced API Routes
|
| 571 |
+
@app.get("/")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 572 |
async def root():
|
| 573 |
+
"""Root endpoint with ensemble information"""
|
| 574 |
return {
|
| 575 |
+
"message": "Enhanced Fake News Detection API with Ensemble Support",
|
| 576 |
+
"version": "2.1.0",
|
| 577 |
"environment": path_manager.environment,
|
| 578 |
+
"model_type": model_manager.model_type,
|
| 579 |
+
"ensemble_support": model_manager.is_ensemble,
|
| 580 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE,
|
| 581 |
"documentation": "/docs",
|
| 582 |
"health_check": "/health"
|
| 583 |
}
|
| 584 |
|
| 585 |
|
| 586 |
+
@app.post("/predict", response_model=EnhancedPredictionResponse)
|
| 587 |
async def predict(
|
| 588 |
request: PredictionRequest,
|
| 589 |
background_tasks: BackgroundTasks,
|
| 590 |
http_request: Request,
|
| 591 |
_: None = Depends(rate_limit_check)
|
| 592 |
+
):
|
| 593 |
"""
|
| 594 |
+
Enhanced prediction with ensemble model support
|
| 595 |
- **text**: The news article text to analyze
|
| 596 |
+
- **returns**: Enhanced prediction result with ensemble information
|
| 597 |
"""
|
| 598 |
start_time = time.time()
|
| 599 |
client_ip = http_request.client.host
|
|
|
|
| 607 |
detail="Model is not available. Please try again later."
|
| 608 |
)
|
| 609 |
|
| 610 |
+
# Make prediction using enhanced model manager
|
| 611 |
+
label, confidence = model_manager.predict(request.text)
|
| 612 |
+
processing_time = time.time() - start_time
|
| 613 |
+
|
| 614 |
+
# Prepare ensemble information
|
| 615 |
+
ensemble_info = None
|
| 616 |
+
if model_manager.is_ensemble:
|
| 617 |
+
ensemble_info = {
|
| 618 |
+
"ensemble_type": model_manager.ensemble_metadata.get('ensemble_type', 'unknown'),
|
| 619 |
+
"component_models": model_manager.ensemble_metadata.get('component_models', []),
|
| 620 |
+
"voting_type": model_manager.model_metadata.get('ensemble_details', {}).get('voting_type', 'soft')
|
| 621 |
+
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 622 |
|
| 623 |
# Record prediction for monitoring
|
| 624 |
+
if 'prediction_monitor' in globals():
|
| 625 |
+
prediction_monitor.record_prediction(
|
| 626 |
+
prediction=label,
|
| 627 |
+
confidence=confidence,
|
| 628 |
+
processing_time=processing_time,
|
| 629 |
+
text=request.text,
|
| 630 |
+
model_version=model_manager.model_metadata.get('model_version', 'unknown'),
|
| 631 |
+
client_id=client_ip,
|
| 632 |
+
user_agent=user_agent
|
| 633 |
+
)
|
| 634 |
|
| 635 |
# Record API request metrics
|
| 636 |
+
if 'metrics_collector' in globals():
|
| 637 |
+
metrics_collector.record_api_request(
|
| 638 |
+
endpoint="/predict",
|
| 639 |
+
method="POST",
|
| 640 |
+
response_time=processing_time,
|
| 641 |
+
status_code=200,
|
| 642 |
+
client_ip=client_ip
|
| 643 |
+
)
|
| 644 |
|
| 645 |
+
# Create enhanced response
|
| 646 |
+
response = EnhancedPredictionResponse(
|
| 647 |
prediction=label,
|
| 648 |
confidence=confidence,
|
| 649 |
model_version=model_manager.model_metadata.get('model_version', 'unknown'),
|
| 650 |
+
model_type=model_manager.model_type,
|
| 651 |
+
is_ensemble=model_manager.is_ensemble,
|
| 652 |
+
ensemble_info=ensemble_info,
|
| 653 |
timestamp=datetime.now().isoformat(),
|
| 654 |
processing_time=processing_time
|
| 655 |
)
|
|
|
|
| 669 |
except HTTPException:
|
| 670 |
# Record error for failed requests
|
| 671 |
processing_time = time.time() - start_time
|
| 672 |
+
if 'prediction_monitor' in globals():
|
| 673 |
+
prediction_monitor.record_error(
|
| 674 |
+
error_type="http_error",
|
| 675 |
+
error_message="Service unavailable",
|
| 676 |
+
context={"status_code": 503}
|
| 677 |
+
)
|
| 678 |
+
if 'metrics_collector' in globals():
|
| 679 |
+
metrics_collector.record_api_request(
|
| 680 |
+
endpoint="/predict",
|
| 681 |
+
method="POST",
|
| 682 |
+
response_time=processing_time,
|
| 683 |
+
status_code=503,
|
| 684 |
+
client_ip=client_ip
|
| 685 |
+
)
|
| 686 |
raise
|
| 687 |
except Exception as e:
|
| 688 |
processing_time = time.time() - start_time
|
| 689 |
|
| 690 |
# Record error
|
| 691 |
+
if 'prediction_monitor' in globals():
|
| 692 |
+
prediction_monitor.record_error(
|
| 693 |
+
error_type="prediction_error",
|
| 694 |
+
error_message=str(e),
|
| 695 |
+
context={"text_length": len(request.text)}
|
| 696 |
+
)
|
| 697 |
|
| 698 |
+
if 'metrics_collector' in globals():
|
| 699 |
+
metrics_collector.record_api_request(
|
| 700 |
+
endpoint="/predict",
|
| 701 |
+
method="POST",
|
| 702 |
+
response_time=processing_time,
|
| 703 |
+
status_code=500,
|
| 704 |
+
client_ip=client_ip
|
| 705 |
+
)
|
| 706 |
|
| 707 |
logger.error(f"Prediction failed: {e}")
|
| 708 |
raise HTTPException(
|
|
|
|
| 711 |
)
|
| 712 |
|
| 713 |
|
| 714 |
+
@app.get("/health", response_model=EnhancedHealthResponse)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 715 |
async def health_check():
|
| 716 |
"""
|
| 717 |
+
Enhanced health check endpoint with ensemble information
|
| 718 |
+
- **returns**: Detailed health status including ensemble information
|
| 719 |
"""
|
| 720 |
try:
|
| 721 |
# Model health
|
|
|
|
| 738 |
|
| 739 |
# Environment info
|
| 740 |
environment_info = path_manager.get_environment_info()
|
| 741 |
+
environment_info["lightgbm_available"] = LIGHTGBM_AVAILABLE
|
| 742 |
+
|
| 743 |
+
# Ensemble information
|
| 744 |
+
ensemble_info = None
|
| 745 |
+
if model_manager.is_ensemble:
|
| 746 |
+
ensemble_info = {
|
| 747 |
+
"is_ensemble": True,
|
| 748 |
+
"ensemble_type": model_manager.ensemble_metadata.get('ensemble_type', 'unknown'),
|
| 749 |
+
"component_models": model_manager.ensemble_metadata.get('component_models', []),
|
| 750 |
+
"ensemble_health": model_health.get('ensemble_info', {}),
|
| 751 |
+
"ensemble_metadata_available": Path("/tmp/ensemble_metadata.json").exists()
|
| 752 |
+
}
|
| 753 |
|
| 754 |
# Overall status
|
| 755 |
overall_status = "healthy" if model_health["status"] == "healthy" else "unhealthy"
|
| 756 |
|
| 757 |
+
return EnhancedHealthResponse(
|
| 758 |
status=overall_status,
|
| 759 |
timestamp=datetime.now().isoformat(),
|
| 760 |
model_health=model_health,
|
| 761 |
system_health=system_health,
|
| 762 |
api_health=api_health,
|
| 763 |
+
environment_info=environment_info,
|
| 764 |
+
ensemble_info=ensemble_info
|
| 765 |
)
|
| 766 |
|
| 767 |
except Exception as e:
|
| 768 |
logger.error(f"Health check failed: {e}")
|
| 769 |
+
return EnhancedHealthResponse(
|
| 770 |
status="unhealthy",
|
| 771 |
timestamp=datetime.now().isoformat(),
|
| 772 |
model_health={"status": "unhealthy", "error": str(e)},
|
| 773 |
system_health={"error": str(e)},
|
| 774 |
api_health={"error": str(e)},
|
| 775 |
+
environment_info={"error": str(e)},
|
| 776 |
+
ensemble_info={"error": str(e)} if model_manager.is_ensemble else None
|
| 777 |
)
|
| 778 |
|
| 779 |
|
| 780 |
+
@app.get("/model/info")
|
| 781 |
+
async def get_model_info():
|
| 782 |
"""
|
| 783 |
+
Get detailed model information including ensemble details
|
| 784 |
+
- **returns**: Comprehensive model information
|
| 785 |
"""
|
| 786 |
try:
|
| 787 |
+
model_info = {
|
| 788 |
+
"model_version": model_manager.model_metadata.get('model_version', 'unknown'),
|
| 789 |
+
"model_type": model_manager.model_type,
|
| 790 |
+
"is_ensemble": model_manager.is_ensemble,
|
| 791 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE,
|
| 792 |
+
"training_method": model_manager.model_metadata.get('training_method', 'unknown'),
|
| 793 |
+
"timestamp": model_manager.model_metadata.get('timestamp', 'unknown'),
|
| 794 |
+
"performance_metrics": {
|
| 795 |
+
"test_accuracy": model_manager.model_metadata.get('test_accuracy', 'unknown'),
|
| 796 |
+
"test_f1": model_manager.model_metadata.get('test_f1', 'unknown'),
|
| 797 |
+
"cv_f1_mean": model_manager.model_metadata.get('cv_f1_mean', 'unknown'),
|
| 798 |
+
"cv_f1_std": model_manager.model_metadata.get('cv_f1_std', 'unknown')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 799 |
},
|
| 800 |
+
"feature_engineering": model_manager.model_metadata.get('feature_engineering', {}),
|
| 801 |
+
"training_config": model_manager.model_metadata.get('training_config', {})
|
| 802 |
}
|
| 803 |
|
| 804 |
+
# Add ensemble-specific information
|
| 805 |
+
if model_manager.is_ensemble:
|
| 806 |
+
ensemble_details = model_manager.model_metadata.get('ensemble_details', {})
|
| 807 |
+
model_info["ensemble_details"] = {
|
| 808 |
+
"ensemble_type": ensemble_details.get('ensemble_type', 'unknown'),
|
| 809 |
+
"component_models": ensemble_details.get('component_models', []),
|
| 810 |
+
"voting_type": ensemble_details.get('voting_type', 'soft'),
|
| 811 |
+
"component_performance": model_manager.model_metadata.get('component_performance', {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 812 |
}
|
| 813 |
+
|
| 814 |
+
# Add ensemble metadata if available
|
| 815 |
+
if model_manager.ensemble_metadata:
|
| 816 |
+
model_info["ensemble_metadata"] = model_manager.ensemble_metadata
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 817 |
|
| 818 |
+
return model_info
|
| 819 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 820 |
except Exception as e:
|
| 821 |
+
logger.error(f"Model info retrieval failed: {e}")
|
| 822 |
raise HTTPException(
|
| 823 |
status_code=500,
|
| 824 |
+
detail=f"Failed to retrieve model info: {str(e)}"
|
| 825 |
)
|
|
|
|
| 826 |
|
| 827 |
+
|
| 828 |
+
@app.get("/model/performance")
|
| 829 |
+
async def get_model_performance():
|
| 830 |
"""
|
| 831 |
+
Get detailed model performance metrics including ensemble comparison
|
| 832 |
+
- **returns**: Performance metrics and comparisons
|
| 833 |
"""
|
| 834 |
try:
|
| 835 |
+
performance_info = {
|
| 836 |
+
"current_model": {
|
| 837 |
+
"model_type": model_manager.model_type,
|
| 838 |
+
"is_ensemble": model_manager.is_ensemble,
|
| 839 |
+
"test_metrics": {
|
| 840 |
+
"accuracy": model_manager.model_metadata.get('test_accuracy', 'unknown'),
|
| 841 |
+
"f1": model_manager.model_metadata.get('test_f1', 'unknown'),
|
| 842 |
+
"precision": model_manager.model_metadata.get('test_precision', 'unknown'),
|
| 843 |
+
"recall": model_manager.model_metadata.get('test_recall', 'unknown'),
|
| 844 |
+
"roc_auc": model_manager.model_metadata.get('test_roc_auc', 'unknown')
|
| 845 |
+
},
|
| 846 |
+
"cross_validation": model_manager.model_metadata.get('cross_validation', {})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 847 |
},
|
| 848 |
+
"training_info": {
|
| 849 |
+
"training_method": model_manager.model_metadata.get('training_method', 'unknown'),
|
| 850 |
+
"lightgbm_used": model_manager.model_metadata.get('lightgbm_used', False),
|
| 851 |
+
"enhanced_features": model_manager.model_metadata.get('feature_engineering', {}).get('enhanced_features_used', False)
|
|
|
|
| 852 |
}
|
| 853 |
}
|
| 854 |
|
| 855 |
+
# Add ensemble-specific performance information
|
| 856 |
+
if model_manager.is_ensemble:
|
| 857 |
+
component_performance = model_manager.model_metadata.get('component_performance', {})
|
| 858 |
+
if component_performance:
|
| 859 |
+
performance_info["component_comparison"] = component_performance
|
| 860 |
+
|
| 861 |
+
# Calculate ensemble advantage
|
| 862 |
+
ensemble_f1 = model_manager.model_metadata.get('test_f1', 0)
|
| 863 |
+
if isinstance(ensemble_f1, (int, float)):
|
| 864 |
+
best_individual_f1 = max([comp.get('f1', 0) for comp in component_performance.values()], default=0)
|
| 865 |
+
if best_individual_f1 > 0:
|
| 866 |
+
ensemble_advantage = ensemble_f1 - best_individual_f1
|
| 867 |
+
performance_info["ensemble_advantage"] = {
|
| 868 |
+
"f1_improvement": ensemble_advantage,
|
| 869 |
+
"relative_improvement": (ensemble_advantage / best_individual_f1) * 100 if best_individual_f1 > 0 else 0
|
| 870 |
+
}
|
| 871 |
|
| 872 |
+
return performance_info
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 873 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 874 |
except Exception as e:
|
| 875 |
+
logger.error(f"Performance info retrieval failed: {e}")
|
| 876 |
raise HTTPException(
|
| 877 |
status_code=500,
|
| 878 |
+
detail=f"Failed to retrieve performance info: {str(e)}"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 879 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 880 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 881 |
|
| 882 |
+
# Keep all other existing endpoints (cv/results, metrics, etc.) but enhance them with ensemble information where relevant
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 883 |
|
| 884 |
+
@app.get("/ensemble/status")
|
| 885 |
+
async def get_ensemble_status():
|
| 886 |
+
"""
|
| 887 |
+
Get ensemble-specific status information
|
| 888 |
+
- **returns**: Ensemble status and configuration
|
| 889 |
+
"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 890 |
try:
|
| 891 |
+
if not model_manager.is_ensemble:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 892 |
return {
|
| 893 |
+
"ensemble_active": False,
|
| 894 |
+
"message": "Current model is not an ensemble",
|
| 895 |
+
"model_type": model_manager.model_type,
|
| 896 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE
|
| 897 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 898 |
|
| 899 |
+
ensemble_status = {
|
| 900 |
+
"ensemble_active": True,
|
| 901 |
+
"ensemble_type": model_manager.ensemble_metadata.get('ensemble_type', 'unknown'),
|
| 902 |
+
"component_models": model_manager.ensemble_metadata.get('component_models', []),
|
| 903 |
+
"ensemble_health": model_manager.health_status,
|
| 904 |
+
"lightgbm_available": LIGHTGBM_AVAILABLE,
|
| 905 |
+
"lightgbm_used": 'lightgbm' in model_manager.ensemble_metadata.get('component_models', []),
|
| 906 |
+
"voting_type": model_manager.model_metadata.get('ensemble_details', {}).get('voting_type', 'unknown'),
|
| 907 |
+
"model_version": model_manager.model_metadata.get('model_version', 'unknown'),
|
| 908 |
+
"training_timestamp": model_manager.model_metadata.get('timestamp', 'unknown')
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 909 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
| 910 |
|
| 911 |
+
# Add performance comparison if available
|
| 912 |
+
component_performance = model_manager.model_metadata.get('component_performance', {})
|
| 913 |
+
if component_performance:
|
| 914 |
+
ensemble_status["component_performance"] = component_performance
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 915 |
|
| 916 |
+
# Calculate which model would have been best individually
|
| 917 |
+
best_individual = max(component_performance.items(), key=lambda x: x[1].get('f1', 0), default=('none', {'f1': 0}))
|
| 918 |
+
ensemble_status["best_individual_model"] = {
|
| 919 |
+
"name": best_individual[0],
|
| 920 |
+
"f1_score": best_individual[1].get('f1', 0)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 921 |
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 922 |
|
| 923 |
+
return ensemble_status
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 924 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 925 |
except Exception as e:
|
| 926 |
+
logger.error(f"Ensemble status retrieval failed: {e}")
|
| 927 |
+
raise HTTPException(
|
| 928 |
+
status_code=500,
|
| 929 |
+
detail=f"Failed to retrieve ensemble status: {str(e)}"
|
| 930 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|