Commit
·
bfc4267
1
Parent(s):
cecd6fa
Update data/prepare_datasets.py
Browse files- data/prepare_datasets.py +112 -47
data/prepare_datasets.py
CHANGED
|
@@ -8,6 +8,9 @@ from sklearn.model_selection import train_test_split
|
|
| 8 |
import hashlib
|
| 9 |
import json
|
| 10 |
from datetime import datetime
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
# Configure logging
|
| 13 |
logging.basicConfig(
|
|
@@ -131,7 +134,7 @@ class DatasetPreparer:
|
|
| 131 |
], ignore_index=True)
|
| 132 |
|
| 133 |
logger.info(f"Combined Kaggle dataset: {len(df_combined)} samples")
|
| 134 |
-
return df_combined
|
| 135 |
|
| 136 |
except Exception as e:
|
| 137 |
logger.error(f"Error loading Kaggle dataset: {e}")
|
|
@@ -201,7 +204,7 @@ class DatasetPreparer:
|
|
| 201 |
if liar_dfs:
|
| 202 |
combined_liar = pd.concat(liar_dfs, ignore_index=True)
|
| 203 |
logger.info(f"Combined LIAR dataset: {len(combined_liar)} samples")
|
| 204 |
-
return combined_liar
|
| 205 |
else:
|
| 206 |
logger.warning("No LIAR data could be processed")
|
| 207 |
return None
|
|
@@ -226,7 +229,8 @@ class DatasetPreparer:
|
|
| 226 |
# Validate text quality
|
| 227 |
valid_mask = df['text'].apply(self.validate_text_quality)
|
| 228 |
df = df[valid_mask]
|
| 229 |
-
logger.info(f"Removed {initial_count - len(valid_mask.sum())} low-quality texts")
|
|
|
|
| 230 |
|
| 231 |
# Remove duplicates
|
| 232 |
before_dedup = len(df)
|
|
@@ -300,63 +304,124 @@ class DatasetPreparer:
|
|
| 300 |
return float(np.mean(scores))
|
| 301 |
|
| 302 |
def prepare_datasets(self) -> Tuple[bool, str]:
|
| 303 |
-
"""Main
|
|
|
|
|
|
|
| 304 |
try:
|
| 305 |
-
|
| 306 |
-
|
| 307 |
-
|
| 308 |
-
|
| 309 |
-
# Load Kaggle dataset
|
| 310 |
-
kaggle_df = self.load_kaggle_dataset()
|
| 311 |
-
if kaggle_df is not None:
|
| 312 |
-
datasets.append(kaggle_df)
|
| 313 |
|
| 314 |
-
#
|
| 315 |
-
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
|
| 319 |
-
|
| 320 |
-
|
| 321 |
-
|
| 322 |
-
|
| 323 |
-
return False, error_msg
|
| 324 |
|
| 325 |
-
|
| 326 |
-
|
| 327 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 328 |
|
| 329 |
-
#
|
| 330 |
-
|
| 331 |
|
| 332 |
-
|
| 333 |
-
|
| 334 |
-
error_msg = f"Insufficient samples after validation: {len(validated_df)}"
|
| 335 |
-
logger.error(error_msg)
|
| 336 |
-
return False, error_msg
|
| 337 |
|
| 338 |
-
|
| 339 |
-
metadata = self.generate_dataset_metadata(validated_df)
|
| 340 |
|
| 341 |
-
# Save dataset
|
| 342 |
-
|
| 343 |
|
| 344 |
-
# Save
|
| 345 |
-
|
| 346 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 347 |
|
| 348 |
-
|
| 349 |
-
|
| 350 |
-
|
| 351 |
-
logger.info(f"Saved to: {self.output_path}")
|
| 352 |
|
| 353 |
-
|
|
|
|
| 354 |
|
| 355 |
except Exception as e:
|
| 356 |
-
|
| 357 |
-
|
| 358 |
-
return False, error_msg
|
| 359 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 360 |
def main():
|
| 361 |
"""Main execution function"""
|
| 362 |
preparer = DatasetPreparer()
|
|
|
|
| 8 |
import hashlib
|
| 9 |
import json
|
| 10 |
from datetime import datetime
|
| 11 |
+
from data.data_validator import DataValidationPipeline
|
| 12 |
+
from data.validation_schemas import ValidationLevel, DataSource
|
| 13 |
+
from typing import Tuple, Dict
|
| 14 |
|
| 15 |
# Configure logging
|
| 16 |
logging.basicConfig(
|
|
|
|
| 134 |
], ignore_index=True)
|
| 135 |
|
| 136 |
logger.info(f"Combined Kaggle dataset: {len(df_combined)} samples")
|
| 137 |
+
return self.validate_dataset_with_schemas(df_combined, 'kaggle_combined')
|
| 138 |
|
| 139 |
except Exception as e:
|
| 140 |
logger.error(f"Error loading Kaggle dataset: {e}")
|
|
|
|
| 204 |
if liar_dfs:
|
| 205 |
combined_liar = pd.concat(liar_dfs, ignore_index=True)
|
| 206 |
logger.info(f"Combined LIAR dataset: {len(combined_liar)} samples")
|
| 207 |
+
return self.validate_dataset_with_schemas(combined_liar, 'liar_combined')
|
| 208 |
else:
|
| 209 |
logger.warning("No LIAR data could be processed")
|
| 210 |
return None
|
|
|
|
| 229 |
# Validate text quality
|
| 230 |
valid_mask = df['text'].apply(self.validate_text_quality)
|
| 231 |
df = df[valid_mask]
|
| 232 |
+
# logger.info(f"Removed {initial_count - len(valid_mask.sum())} low-quality texts")
|
| 233 |
+
logger.info(f"Removed {initial_count - valid_mask.sum()} low-quality texts")
|
| 234 |
|
| 235 |
# Remove duplicates
|
| 236 |
before_dedup = len(df)
|
|
|
|
| 304 |
return float(np.mean(scores))
|
| 305 |
|
| 306 |
def prepare_datasets(self) -> Tuple[bool, str]:
|
| 307 |
+
"""Main method to prepare all datasets with validation"""
|
| 308 |
+
logger.info("Starting dataset preparation with validation...")
|
| 309 |
+
|
| 310 |
try:
|
| 311 |
+
# Load and validate datasets
|
| 312 |
+
kaggle_result = self.load_kaggle_dataset()
|
| 313 |
+
liar_result = self.load_liar_dataset()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
|
| 315 |
+
# Handle None returns gracefully
|
| 316 |
+
if kaggle_result is None:
|
| 317 |
+
logger.warning("Kaggle dataset loading failed")
|
| 318 |
+
kaggle_df, kaggle_validation = pd.DataFrame(), {
|
| 319 |
+
'source': 'kaggle_combined', 'original_count': 0, 'valid_count': 0,
|
| 320 |
+
'success_rate': 0, 'overall_quality_score': 0, 'validation_timestamp': datetime.now().isoformat()
|
| 321 |
+
}
|
| 322 |
+
else:
|
| 323 |
+
kaggle_df, kaggle_validation = kaggle_result
|
|
|
|
| 324 |
|
| 325 |
+
if liar_result is None:
|
| 326 |
+
logger.warning("LIAR dataset loading failed")
|
| 327 |
+
liar_df, liar_validation = pd.DataFrame(), {
|
| 328 |
+
'source': 'liar_combined', 'original_count': 0, 'valid_count': 0,
|
| 329 |
+
'success_rate': 0, 'overall_quality_score': 0, 'validation_timestamp': datetime.now().isoformat()
|
| 330 |
+
}
|
| 331 |
+
else:
|
| 332 |
+
liar_df, liar_validation = liar_result
|
| 333 |
|
| 334 |
+
# Combine datasets
|
| 335 |
+
datasets_to_combine = [df for df in [kaggle_df, liar_df] if not df.empty]
|
| 336 |
|
| 337 |
+
if not datasets_to_combine:
|
| 338 |
+
return False, "No datasets could be loaded and validated"
|
|
|
|
|
|
|
|
|
|
| 339 |
|
| 340 |
+
combined_df = pd.concat(datasets_to_combine, ignore_index=True)
|
|
|
|
| 341 |
|
| 342 |
+
# Save combined dataset
|
| 343 |
+
combined_df.to_csv(self.output_path, index=False)
|
| 344 |
|
| 345 |
+
# Save validation reports
|
| 346 |
+
total_original = kaggle_validation['original_count'] + liar_validation['original_count']
|
| 347 |
+
validation_report = {
|
| 348 |
+
'datasets': {
|
| 349 |
+
'kaggle': kaggle_validation,
|
| 350 |
+
'liar': liar_validation
|
| 351 |
+
},
|
| 352 |
+
'combined_stats': {
|
| 353 |
+
'total_articles': len(combined_df),
|
| 354 |
+
'total_original': total_original,
|
| 355 |
+
'overall_success_rate': len(combined_df) / max(1, total_original),
|
| 356 |
+
'validation_timestamp': datetime.now().isoformat()
|
| 357 |
+
}
|
| 358 |
+
}
|
| 359 |
|
| 360 |
+
validation_report_path = self.output_dir / "dataset_validation_report.json"
|
| 361 |
+
with open(validation_report_path, 'w') as f:
|
| 362 |
+
json.dump(validation_report, f, indent=2)
|
|
|
|
| 363 |
|
| 364 |
+
logger.info(f"Dataset preparation complete. Validation report saved to {validation_report_path}")
|
| 365 |
+
return True, f"Successfully prepared {len(combined_df)} validated articles"
|
| 366 |
|
| 367 |
except Exception as e:
|
| 368 |
+
logger.error(f"Dataset preparation failed: {e}")
|
| 369 |
+
return False, f"Dataset preparation failed: {str(e)}"
|
|
|
|
| 370 |
|
| 371 |
+
def validate_dataset_with_schemas(self, df: pd.DataFrame, source_name: str) -> Tuple[pd.DataFrame, Dict]:
|
| 372 |
+
"""Validate dataset using comprehensive schemas"""
|
| 373 |
+
logger.info(f"Starting schema validation for {source_name}...")
|
| 374 |
+
|
| 375 |
+
validator = DataValidationPipeline()
|
| 376 |
+
|
| 377 |
+
# Convert DataFrame to validation format
|
| 378 |
+
articles_data = []
|
| 379 |
+
for _, row in df.iterrows():
|
| 380 |
+
article_data = {
|
| 381 |
+
'text': str(row.get('text', '')),
|
| 382 |
+
'label': int(row.get('label', 0)),
|
| 383 |
+
'source': source_name
|
| 384 |
+
}
|
| 385 |
+
|
| 386 |
+
if 'title' in row and pd.notna(row['title']):
|
| 387 |
+
article_data['title'] = str(row['title'])
|
| 388 |
+
if 'url' in row and pd.notna(row['url']):
|
| 389 |
+
article_data['url'] = str(row['url'])
|
| 390 |
+
|
| 391 |
+
articles_data.append(article_data)
|
| 392 |
+
|
| 393 |
+
# Perform batch validation
|
| 394 |
+
validation_result = validator.validate_batch(
|
| 395 |
+
articles_data,
|
| 396 |
+
batch_id=f"{source_name}_{datetime.now().strftime('%Y%m%d_%H%M%S')}",
|
| 397 |
+
validation_level=ValidationLevel.MODERATE
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
# Filter valid articles and add quality scores
|
| 401 |
+
valid_indices = [i for i, result in enumerate(validation_result.validation_results) if result.is_valid]
|
| 402 |
+
|
| 403 |
+
if valid_indices:
|
| 404 |
+
valid_df = df.iloc[valid_indices].copy()
|
| 405 |
+
quality_scores = [validation_result.validation_results[i].quality_metrics.get('overall_quality_score', 0.0)
|
| 406 |
+
for i in valid_indices]
|
| 407 |
+
valid_df['validation_quality_score'] = quality_scores
|
| 408 |
+
valid_df['validation_timestamp'] = datetime.now().isoformat()
|
| 409 |
+
else:
|
| 410 |
+
valid_df = pd.DataFrame(columns=df.columns)
|
| 411 |
+
|
| 412 |
+
validation_summary = {
|
| 413 |
+
'source': source_name,
|
| 414 |
+
'original_count': len(df),
|
| 415 |
+
'valid_count': len(valid_df),
|
| 416 |
+
'success_rate': validation_result.success_rate,
|
| 417 |
+
'overall_quality_score': validation_result.overall_quality_score,
|
| 418 |
+
'validation_timestamp': datetime.now().isoformat()
|
| 419 |
+
}
|
| 420 |
+
|
| 421 |
+
return valid_df, validation_summary
|
| 422 |
+
|
| 423 |
+
|
| 424 |
+
|
| 425 |
def main():
|
| 426 |
"""Main execution function"""
|
| 427 |
preparer = DatasetPreparer()
|